Metal Lamination Manufacturing Technology from Subtraction to Addition-3D Intelligent Manufacturing
Knowledge

Metal Lamination Manufacturing Technology from Subtraction to Addition-3D Intelligent Manufacturing

The global manufacturing industry is moving towards intelligent manufacturing, and Industry 4.0 is driving the manufacturing industry towards trends of higher efficiency, lower costs, and intelligent and flexible production. The nine technologies of Industry 4.0 include Big Data, Laminated Manufacturing, Cloud Technology, Automation, System Integration, Internet of Things, Cyber Security, Augmented Reality, and Simulation.
Published: Jan 21, 2022
Metal Lamination Manufacturing Technology from Subtraction to Addition-3D Intelligent Manufacturing

Indispensable technological manufacturing technologies in the transformation of Industry 4.0:

Today's manufacturing industry is undergoing a huge technological revolution. Industry 4.0 is orienting towards high production efficiency, cost reduction, and flexible and intelligent production. Future factory concepts will include the increased use of major technologies such as multi-layer manufacturing, big data, system integration, and automation. Various enterprises and R&D units have invested much in the research of multi-layer manufacturing technology, one of the core technologies. The concept of prototyping and mass production of tools is gradually being eliminated and is being replaced with rapid proofing. Design and manufacturing are entering an era of highly customized digital manufacturing technology.     

Among the nine major technologies of Industry 4.0, laminated manufacturing (also known as 3D printing) is regarded as the technology with the greatest potential to significantly change the manufacturing industry. The use of rapid proofing is gradually eliminating the prototyping of tools and is providing direct product realization. This has brought about new business models and product innovation capabilities. As technology matures, an era of high customization and digital manufacturing technology is taking place.

Metal laminated manufacturing is an additive form of manufacturing where objects with complex structures can be manufactured without the use of molds. Because of the high degree of design freedom, it is easier to develop applications which cannot be achieved by the use of traditional subtractive processes or plastic forming processes. Additive manufacturing can be used to make complex structural objects, special interior feature variations, and highly customized products which are lightweight and material saving.

In recent years, with the number of companies and individuals using laminate manufacturing to produce components and products increasing, innovative ideas have been introduced which have further stimulated growth in the industry. Laminated manufacturing is currently the technology most used. However due to material property restrictions, it is only suitable for proofing models and for forming structures that do not face safety considerations. Whether it is automotive, medical, food, aerospace, or even industrial, the demand for innovation in the metal lamination manufacturing industry has turned into a torrent, and is driving the development of high speed and high precision manufacturing.

From Product Design to Manufacturing-Analyzing the Current Situation of Metal Lamination Manufacturing

Metal lamination manufacturing technology has become important in the development of emerging industries, and the demand has grown year by year. It’s application areas include upstream design products, midstream equipment and material applications, downstream processing and manufacturing, and post-processing.

  • Upstream - Product design: In product design, computer 3D programs will scan, reverse engineer and construct 3D drawings for products.
  • Midstream - Equipment and material applications: Mainstream metal laminate manufacturing includes Binder Jetting (BJ), Powder Bed Fusion (PBF), and Directed Energy Deposition (DED); The materials used in metal laminate manufacturing include adhesives and metal powder (stainless steel alloy powder, titanium alloy powder, etc.).
  • Downstream - Manufacturing, post-processing: After metal laminating, the parts undergo post-processing (cutting, polishing, surface treatment, etc.), and after post-processing, the surface is processed to meet the required appearance and size standards of the final product.

At present, traditional manufacturing technology methods include cutting, casting, and plastic formation. Due to technical limitations of traditional manufacturing processes, relatively complex products like turbine blade parts are difficult to form. These special lightweight structures can be manufactured faster and more conveniently using metal lamination production.  

Metal build-up manufacturing technology evolution:

Since 1990, metal lamination manufacturing has flourished, and various processes have been developed. Selective laser melting (SLM) is the most widely used method in the market. In the aerospace or medical industry, mainstream factories have successfully produced highly specialized process equipment.

SLM is characterized by the ability to produce finished products with structural flexibility using a wide range of materials. Multiple irregular structures can be made using SLM processing, integrated molding, or a combination of the two. One-piece, large composite structures can be made with SLM that are not possible to make by other processes. If vigorously promoted, SLM will enable the industry to make break-throughs that will eliminate the bottlenecks of traditional processes, and further improve the integrity of this technology.

Metal Lamination Manufacturing Technology:

Metal lamination manufacturing mainly includes three molding technologies: Laser Powder Bed Fusion (LPBF), Binder Jetting printing (BJ), and Directional Energy Deposition (DED).

  • Laser Powder Bed Fusion Technology (LPBF):
    Laser powder bed fusion technology is currently the most common forming method in metal lamination manufacturing. The laser is used as the energy source to scan and heat the flat powder. After the scanning is completed, the Z-axis of the platform drops to a certain thickness. Then the powder spreading device spreads the new powder on the platform, and the energy source scans a new layer. By repeating the above process, the three-dimensional object is gradually formed using the principle of lamination manufacturing. After the process, the loose powder that has not been scanned by the laser is removed to obtain the finished product.
  • Binder Jetting Technology (BJ):
    The adhesive jet printing process uses two or more materials, with powder as the base, and the adhesive as the bond between the powder and the powder. Spread the powdered material in the construction task, and then use the inkjet head to spray the adhesive on the selected printing position, and then spread a new layer of powder. The printout is complete. The printed product of this technology needs to go through post-processing. The function of debinding is to remove the adhesive in the initial embryo; sintering is to combine the degreasing brown embryo into one, and after it is cooled and taken out, the metal printed product can be obtained.
  • Directed Energy Deposition Technology (DED):
    DED technology mainly uses powder cladding to transport inert gas and metal powder coaxially, and deposit the powder in the high-temperature melting zone through laser or other energy sources. Its characteristic is that it is not limited by the size of the powder bed, and can make large-sized metal objects or make slender structures on curved workpieces. It is especially suited for the manufacture and repair of aerospace components.

Features of metal lamination manufacturing:

Due to its high degree of flexibility and reliability, metal lamination manufacturing has spread to many fields. The three mainstream metal laminate technologies have unique characteristics and are irreplaceable in many aspects.

  • Forming efficiency:
    Among the three mainstream metal lamination manufacturing technologies, BJ is most suitable for mass production. The matrix nozzle can perform large-area graphic printing, and produce multiple molded objects at high speed. SLM has developed using laser co-forming technology that greatly reduces the molding time. DED technology manufacturing has not yet shown signs of significant improvement in shortening the processing time.
  • Mechanical behavior:
    The performance of laminated parts is closely related to the density of the finished product. BJ needs to be formed by adhesives instead of directly melting the metal during the process. The finished product is affected by pores and it is difficult to achieve a high theoretical density; while LPBF and DED finished products use high-density energy to melt the metal powder. Deposition molding can reach more than 99% of the theoretical density and has high strength.
  • Forming size:
    BJ formed items contain binders and require degreasing and sintering to obtain metal products. The need to complete degreasing and the high time costs, make it difficult to make thicker objects. LPBF needs to be processed in an inert gas atmosphere or vacuum, so the size of the finished product is limited by the size of the molding chamber. In contrast, the DED print head can output powder and protective gas at the same time, without the limitation of the powder bed mechanism, so can produce large objects.

Metal Lamination Manufacturing Applications:

  • Shorten manufacturing time:
    Traditional metal processing methods are divided into the cutting method, molding method, and casting method. The metal cutting method is the most commonly used metal processing method. The main methods are turning, milling, planning, grinding, drilling, etc. Usually, it is necessary to cooperate with a specific special fixture to perform precise processing in a specific position. This method requires the production of a jig for smooth processing. The common molding methods include stamping, powder pressing, metal powder injection molding, and die casting. This method requires the production of complex molds to form. Generally, the mold production time is about 5 to 60 days, and the complex product structure even requires a longer manufacturing time to complete the mold manufacturing.
    Common traditional casting methods include sand casting and lost wax casting. The characteristics of these casting methods are insufficient to provide the appearance characteristics required for many objects. Metal lamination manufacturing can eliminate the time required for jig and mold making, saving a large amount of production time.
  • Few in number:
    When only one sample object is required, there is no need to manufacture mockups and molds. Because the cost of mockups and molds remains high, and take a large amount of time to produce, metal laminate manufacturing can greatly reduce this cost and save time.
  • Complex shape:
    The complex shapes and structures are currently not possible to make with traditional, lattice structure, pour mold processing methods. Metal laminate manufacturing can completely overcome these challenges.
  • One piece processing:
    In the face of increasing environmental requirements, the one-piece molding process made possible with metal lamination manufacturing can greatly reduce material defects caused by traditional processing.
Published by Jan 21, 2022 Source :maonline

Further reading

You might also be interested in ...

Headline
Knowledge
Essential for Precision Machining: A Complete Guide to Tungsten Carbide Center Drills
In modern manufacturing, precision is the core standard by which product quality and performance are measured. From aerospace components to medical devices, even a minor deviation can lead to serious consequences. When it comes to precision drilling, a critical challenge is ensuring that a drill bit can be accurately positioned at the start of a cut while maintaining stability during high-intensity operations. The tungsten carbide center drill is the professional tool engineered specifically to solve this problem.
Headline
Knowledge
From Cavitation Effect to Industrial Applications: The Secrets of Ultrasonic Cleaning
When your glasses, tableware, or electronic components are stained with stubborn dirt, what can you do? Traditional methods often require vigorous scrubbing or even harsh chemical solvents, which are not environmentally friendly and may scratch the item. At this moment, ultrasonic cleaning acts like an “invisible little helper”, reaching deep into grooves and gaps to gently yet effectively remove contaminants.
Headline
Knowledge
The “Spark Magician” of Metalworking
Electrical Discharge Machining (EDM) is a non-traditional machining process that removes metal through electrical sparks. Unlike conventional methods, it is not limited by material hardness and can precisely create deep cavities, micro-holes, and complex structures in hardened steel, tungsten carbide, or superalloys. The three main types of EDM include wire cutting, die-sinking, and hole drilling, which are widely applied in mold making, aerospace, automotive, and medical industries. Although EDM has a slower processing speed, works only with conductive materials, and requires consideration of electrode wear and surface treatment, its advantages in high precision, zero cutting force, and superior surface finish make it an indispensable technology in precision manufacturing. Moreover, it continues to evolve in line with the trend toward smart manufacturing.
Headline
Knowledge
Press Brake vs Shearing Machine: Functional and Technical Comparison of Industrial Processing Equipment
Press Brake and Shearing Machine are two essential types of equipment in the field of machine tools, widely used in the processing of metal, wood, and other materials. They play critical roles in manufacturing, enabling efficient and precise material forming and cutting. This article introduces the definitions, functions, technical features, and applications of folding and cutting machines, offering neutral and practical knowledge sharing.
Headline
Knowledge
Master Chuck Types & Selection: The Essential Guide for Machinists
In the world of precision manufacturing, every minute detail can determine the quality of the final product. The chuck is a critical yet often overlooked component—it's not just a tool for holding a workpiece, but the very heart of ensuring machining accuracy, efficiency, and safety. This article will take you on a deep dive into the diverse universe of chucks, covering their operating principles, design philosophies, common types, and how to select the right jaws and chucks for different needs. Whether you're new to the industry or a seasoned engineer, this guide will unlock the intricate secrets of chucks, helping you master every detail on your path to manufacturing success.
Headline
Knowledge
An Overview of Electrical Discharge Machining (EDM)
Electrical Discharge Machining (EDM) is a non-traditional manufacturing process that utilizes electrical sparks to remove material from a workpiece. Unlike conventional machining methods such as milling or turning, which rely on physical contact between a tool and the material, EDM operates without direct contact, making it ideal for processing hard or brittle materials that are difficult to machine otherwise. The process involves generating a series of rapid electrical discharges between an electrode and the workpiece, submerged in a dielectric fluid, which erodes the material through thermal energy. This technique has revolutionized precision manufacturing by enabling the creation of complex geometries with high accuracy.
Headline
Knowledge
Applications of Machine Tools in the Aerospace Industry
The aerospace industry is a highly specialized and technology-driven sector, encompassing the design, manufacturing, and maintenance of aircraft, spacecraft, satellites, and related equipment. Machine tools play a critical role in this field, enabling the precision machining of complex metal and composite material components. These tools enhance production efficiency while ensuring the accuracy and reliability required to meet the stringent safety and performance standards of aerospace. This document outlines the key applications, technologies, benefits, and future trends of machine tools in the aerospace industry.
Headline
Knowledge
Smart Healthcare Uncovered:How AI Is Transforming Clinical Practice?
With the rapid rise of artificial intelligence (AI), the healthcare industry is undergoing a disruptive transformation. AI is significantly improving diagnostic accuracy and treatment efficiency while profoundly redefining healthcare professionals’ roles and patient experiences. A comprehensive understanding of the core technologies and clinical applications behind this transformation is essential for grasping the future trends and strategic directions of smart healthcare.
Headline
Knowledge
Principle and Applications of Laser Cutting Machines
As the global manufacturing industry advances toward higher precision and efficiency, laser cutting technology has become a key enabler of industrial upgrading. Compared with traditional shearing, stamping, and mechanical cutting, laser cutting offers non-contact processing, higher accuracy, and greater flexibility. It significantly improves productivity while reducing secondary finishing. Today, it is widely adopted in metalworking and increasingly applied in electronics, aerospace, medical, and architectural design industries.
Headline
Knowledge
Why Are High-Quality Cutting Fluids Critical for Machining Quality?
In CNC and metalworking, cutting fluid is no longer just a coolant—it plays a critical role by providing lubrication, chip removal, and corrosion protection. With the right formulation and concentration, it can reduce cutting heat, minimize friction, extend tool life, and maintain workpiece accuracy. High-pressure cooling further enhances efficiency in deep-hole and high-speed machining. The pairing of tool material with the proper cutting fluid is equally crucial; correct selection and maintenance ensure process stability, prolong equipment life, and improve the overall work environment. Cutting fluid has become an indispensable investment in modern precision manufacturing.
Headline
Knowledge
The Core Standard for Life-Critical Systems: A Complete Guide to IPC Classification
In high-risk fields such as medical, aerospace, and automotive, IPC classifications determine PCB reliability and safety. Class 3 represents the highest standard, requiring zero tolerance for defects, complete via filling, adequate copper annular rings, and rigorous inspections to ensure operation under extreme conditions, while Class 2 suits long-term use in non-critical equipment with minor cosmetic flaws allowed. Class 3’s strict criteria cover component placement, soldering, plating thickness, and environmental testing—adding cost and production time, but far outweighing the risks of failure in life- or safety-critical systems. Thus, defining high-risk equipment as Class 3 during design is essential, making IPC classification a core safeguard rather than an option.
Headline
Knowledge
The Power of Color: How the Printing Industry Protects Brand Quality
In the printing industry, color has always been a core element influencing both quality and sensory experience. Whether in packaging, advertising, or publications, color accuracy directly affects consumer perception and trust in a brand. With the rise of digitalization and globalization, companies increasingly demand brand consistency, making color management more than just an aesthetic concern—it is a safeguard for printing quality and brand value. This article explores the importance of color management, the application of ICC color calibration, and Pantone’s role in brand identity, providing a comprehensive overview of the core knowledge and practical value of color management in printing.
Agree