Transforming Metal Manufacturing: Shifting from Subtraction to Addition - 3D Smart Manufacturing
Knowledge

Transforming Metal Manufacturing: Shifting from Subtraction to Addition - 3D Smart Manufacturing

The worldwide manufacturing sector is shifting toward smart manufacturing, with Industry 4.0 leading the way by promoting greater efficiency, reduced costs, and intelligent, adaptable production processes. The nine key technologies of Industry 4.0 encompass Big Data, Layered Manufacturing, Cloud Technology, Automation, System Integration, Internet of Things, Cybersecurity, Augmented Reality, and Simulation.
Published: Nov 03, 2023
Transforming Metal Manufacturing: Shifting from Subtraction to Addition - 3D Smart Manufacturing

Key Technological Advances in the Transition to Industry 4.0

The modern manufacturing industry is undergoing a significant technological revolution driven by Industry 4.0. This transformation is aimed at achieving higher production efficiency, cost reduction, and more flexible and intelligent production processes. Future factory concepts will prominently feature major technologies such as multi-layer manufacturing, big data, system integration, and automation. Numerous enterprises and research and development units have invested heavily in the exploration of multi-layer manufacturing technology, which stands as one of the core technologies driving this change. The traditional concept of prototyping and mass production of tools is gradually giving way to rapid proofing. This transition signifies that design and manufacturing are entering an era of highly customized digital manufacturing technology.

Among the nine major technologies associated with Industry 4.0, laminated manufacturing, often referred to as 3D printing, is considered to have the greatest potential to profoundly alter the manufacturing landscape. Rapid proofing is progressively replacing the conventional practice of tool prototyping, offering direct product realization. This shift has ushered in new business models and product innovation capabilities. As this technology matures, we are witnessing the advent of an era characterized by high customization and digital manufacturing technology.

Metal laminated manufacturing represents an additive approach to manufacturing, enabling the creation of complex structures without the need for molds. The high degree of design freedom makes it easier to develop applications that were previously unattainable using traditional subtractive or plastic forming processes. Additive manufacturing facilitates the production of intricate structural components, unique interior features, and highly customized, lightweight, and material-efficient products.

In recent years, the increasing number of companies and individuals adopting laminated manufacturing for component and product production has sparked innovative ideas, further fueling industry growth. Currently, laminated manufacturing is the most widely employed technology. However, owing to material limitations, it remains primarily suitable for proofing models and for creating structures with no safety constraints. The demand for innovation in the metal laminated manufacturing industry has surged across various sectors, including automotive, medical, food, aerospace, and industrial, driving the development of high-speed, high-precision manufacturing.

From Product Design to Manufacturing: Analyzing the Current State of Metal Laminated Manufacturing

Metal laminated manufacturing technology has become increasingly crucial in emerging industries, experiencing year-on-year growth in demand. Its application areas span the entire production cycle, including product design, equipment and material applications, manufacturing, and post-processing.

  • Upstream - Product design: In product design, computer 3D programs scan, reverse-engineer, and create 3D drawings for products.
  • Midstream - Equipment and material applications: Mainstream metal laminated manufacturing methods include Binder Jetting (BJ), Powder Bed Fusion (PBF), and Directed Energy Deposition (DED). Materials employed in metal laminated manufacturing encompass adhesives and metal powders, including stainless steel alloy powder and titanium alloy powder, among others.
  • Downstream - Manufacturing, post-processing: Following metal lamination, parts undergo post-processing, involving cutting, polishing, surface treatments, and more. Post-processing ensures that the surface meets the required appearance and size standards for the final product.

Currently, traditional manufacturing methods encompass cutting, casting, and plastic forming. Due to the technical limitations of these traditional processes, the production of relatively complex products like turbine blade parts poses significant challenges. Metal laminated manufacturing offers a faster and more convenient solution for the creation of these special lightweight structures.

Evolution of Metal Laminated Manufacturing Technology:

Since 1990, metal laminated manufacturing has experienced considerable growth, with various processes being developed. Selective laser melting (SLM) stands as the most widely adopted method in the market. In the aerospace and medical industries, mainstream manufacturers have successfully produced highly specialized processing equipment.

SLM is distinguished by its ability to create finished products with structural flexibility, utilizing a broad range of materials. SLM processing enables the production of complex, irregular structures, combining molding and integrated techniques. This approach allows for the creation of single-piece, large composite structures that are otherwise unattainable with alternative methods. By aggressively promoting SLM, the industry can overcome traditional process limitations, further enhancing the technology's integrity.

Metal Laminated Manufacturing Technology:

Metal laminated manufacturing primarily comprises three molding technologies: Laser Powder Bed Fusion (LPBF), Binder Jetting printing (BJ), and Directed Energy Deposition (DED).

  • Laser Powder Bed Fusion Technology (LPBF):
    Laser powder bed fusion is presently the most common metal laminated manufacturing method. It employs a laser as an energy source to scan and heat flat powder. After each scanning pass, the platform's Z-axis drops by a specific thickness. A powder spreading device then distributes fresh powder on the platform, and the energy source scans a new layer. By repeating this process, three-dimensional objects are incrementally constructed using laminated manufacturing principles. Post-processing involves removing any loose powder untouched by the laser to obtain the finished product.
  • Binder Jetting Technology (BJ):
    The adhesive jet printing process utilizes two or more materials, with powder serving as the base and adhesive acting as the binding agent between powder particles. The powdered material is spread in the construction task, and the inkjet head applies adhesive to the selected printing positions before applying a new layer of powder. The printed product requires post-processing, including debinding to remove the initial adhesive and sintering to fuse the degreased brown embryo into a solid metal printed product.
  • Directed Energy Deposition Technology (DED):
    DED technology primarily utilizes powder cladding to transport inert gas and metal powder coaxially, depositing the powder into a high-temperature melting zone via a laser or other energy sources. DED technology is not limited by the size of the powder bed and can create large-sized metal objects or intricate structures on curved workpieces. It is particularly suitable for the manufacture and repair of aerospace components.

Features of Metal Laminated Manufacturing

Due to its high degree of flexibility and reliability, metal laminated manufacturing has found applications in a wide range of fields. The three mainstream metal laminated technologies possess unique characteristics, making them indispensable in various respects.

  • Efficiency of Formation:
    Among the three mainstream metal laminated manufacturing technologies, BJ is most suitable for mass production. The matrix nozzle allows large-scale graphic printing, enabling the rapid production of multiple molded objects. SLM has advanced through the use of laser co-forming technology, significantly reducing the molding time. DED technology manufacturing has yet to show substantial improvements in shortening processing time.
  • Mechanical Behavior:
    The performance of laminated components is closely linked to the density of the finished product. BJ relies on adhesives rather than direct metal melting, resulting in finished products that are affected by pores and struggle to achieve high theoretical density. In contrast, finished products produced using LPBF and DED use high-density energy to melt metal powders. Deposition molding can achieve over 99% of the theoretical density, ensuring high strength.
  • Formation Size:
    BJ-formed items contain binders and require degreasing and sintering to obtain metal products. The need for degreasing and the time-consuming nature of this process limit the production of thicker objects. LPBF requires processing in an inert gas atmosphere or vacuum, constraining the size of the finished product by the molding chamber's dimensions. In contrast, the DED print head can simultaneously dispense powder and protective gas, eliminating the powder bed mechanism's constraints and enabling the production of large objects.

Applications of Metal Laminated Manufacturing

  • Reducing Manufacturing Time:
    Traditional metal processing methods encompass cutting, molding, and casting. Cutting methods involve various precision machining techniques, often requiring specialized fixtures for precise processing. Molding methods, including stamping, powder pressing, metal powder injection molding, and die casting, necessitate the production of intricate molds. Mold production can take anywhere from 5 to 60 days, with more complex product structures requiring even longer. Traditional casting methods such as sand casting and lost wax casting have limitations in achieving the appearance characteristics required for many objects. Metal laminated manufacturing eliminates the need for jig and mold production, resulting in significant time savings.
  • Small-Batch Production:
    When only a single sample object is required, there is no need for prototype and mold production. Given the high costs and time associated with prototype and mold creation, metal laminated manufacturing substantially reduces expenses and production time.
  • Complex Geometries:
    Complex shapes and structures that are often unachievable through traditional lattice structures or mold processing methods can be realized through metal laminated manufacturing.
  • Single-Piece Processing:
    In light of increasing environmental regulations, the single-piece molding process enabled by metal laminated manufacturing significantly reduces material defects resulting from traditional processing methods.
Published by Nov 03, 2023 Source: maonline

Further reading

You might also be interested in ...

Headline
Knowledge
Essential for Precision Machining: A Complete Guide to Tungsten Carbide Center Drills
In modern manufacturing, precision is the core standard by which product quality and performance are measured. From aerospace components to medical devices, even a minor deviation can lead to serious consequences. When it comes to precision drilling, a critical challenge is ensuring that a drill bit can be accurately positioned at the start of a cut while maintaining stability during high-intensity operations. The tungsten carbide center drill is the professional tool engineered specifically to solve this problem.
Headline
Knowledge
From Cavitation Effect to Industrial Applications: The Secrets of Ultrasonic Cleaning
When your glasses, tableware, or electronic components are stained with stubborn dirt, what can you do? Traditional methods often require vigorous scrubbing or even harsh chemical solvents, which are not environmentally friendly and may scratch the item. At this moment, ultrasonic cleaning acts like an “invisible little helper”, reaching deep into grooves and gaps to gently yet effectively remove contaminants.
Headline
Knowledge
The “Spark Magician” of Metalworking
Electrical Discharge Machining (EDM) is a non-traditional machining process that removes metal through electrical sparks. Unlike conventional methods, it is not limited by material hardness and can precisely create deep cavities, micro-holes, and complex structures in hardened steel, tungsten carbide, or superalloys. The three main types of EDM include wire cutting, die-sinking, and hole drilling, which are widely applied in mold making, aerospace, automotive, and medical industries. Although EDM has a slower processing speed, works only with conductive materials, and requires consideration of electrode wear and surface treatment, its advantages in high precision, zero cutting force, and superior surface finish make it an indispensable technology in precision manufacturing. Moreover, it continues to evolve in line with the trend toward smart manufacturing.
Headline
Knowledge
Press Brake vs Shearing Machine: Functional and Technical Comparison of Industrial Processing Equipment
Press Brake and Shearing Machine are two essential types of equipment in the field of machine tools, widely used in the processing of metal, wood, and other materials. They play critical roles in manufacturing, enabling efficient and precise material forming and cutting. This article introduces the definitions, functions, technical features, and applications of folding and cutting machines, offering neutral and practical knowledge sharing.
Headline
Knowledge
Master Chuck Types & Selection: The Essential Guide for Machinists
In the world of precision manufacturing, every minute detail can determine the quality of the final product. The chuck is a critical yet often overlooked component—it's not just a tool for holding a workpiece, but the very heart of ensuring machining accuracy, efficiency, and safety. This article will take you on a deep dive into the diverse universe of chucks, covering their operating principles, design philosophies, common types, and how to select the right jaws and chucks for different needs. Whether you're new to the industry or a seasoned engineer, this guide will unlock the intricate secrets of chucks, helping you master every detail on your path to manufacturing success.
Headline
Knowledge
An Overview of Electrical Discharge Machining (EDM)
Electrical Discharge Machining (EDM) is a non-traditional manufacturing process that utilizes electrical sparks to remove material from a workpiece. Unlike conventional machining methods such as milling or turning, which rely on physical contact between a tool and the material, EDM operates without direct contact, making it ideal for processing hard or brittle materials that are difficult to machine otherwise. The process involves generating a series of rapid electrical discharges between an electrode and the workpiece, submerged in a dielectric fluid, which erodes the material through thermal energy. This technique has revolutionized precision manufacturing by enabling the creation of complex geometries with high accuracy.
Headline
Knowledge
Applications of Machine Tools in the Aerospace Industry
The aerospace industry is a highly specialized and technology-driven sector, encompassing the design, manufacturing, and maintenance of aircraft, spacecraft, satellites, and related equipment. Machine tools play a critical role in this field, enabling the precision machining of complex metal and composite material components. These tools enhance production efficiency while ensuring the accuracy and reliability required to meet the stringent safety and performance standards of aerospace. This document outlines the key applications, technologies, benefits, and future trends of machine tools in the aerospace industry.
Headline
Knowledge
Smart Healthcare Uncovered:How AI Is Transforming Clinical Practice?
With the rapid rise of artificial intelligence (AI), the healthcare industry is undergoing a disruptive transformation. AI is significantly improving diagnostic accuracy and treatment efficiency while profoundly redefining healthcare professionals’ roles and patient experiences. A comprehensive understanding of the core technologies and clinical applications behind this transformation is essential for grasping the future trends and strategic directions of smart healthcare.
Headline
Knowledge
Principle and Applications of Laser Cutting Machines
As the global manufacturing industry advances toward higher precision and efficiency, laser cutting technology has become a key enabler of industrial upgrading. Compared with traditional shearing, stamping, and mechanical cutting, laser cutting offers non-contact processing, higher accuracy, and greater flexibility. It significantly improves productivity while reducing secondary finishing. Today, it is widely adopted in metalworking and increasingly applied in electronics, aerospace, medical, and architectural design industries.
Headline
Knowledge
Why Are High-Quality Cutting Fluids Critical for Machining Quality?
In CNC and metalworking, cutting fluid is no longer just a coolant—it plays a critical role by providing lubrication, chip removal, and corrosion protection. With the right formulation and concentration, it can reduce cutting heat, minimize friction, extend tool life, and maintain workpiece accuracy. High-pressure cooling further enhances efficiency in deep-hole and high-speed machining. The pairing of tool material with the proper cutting fluid is equally crucial; correct selection and maintenance ensure process stability, prolong equipment life, and improve the overall work environment. Cutting fluid has become an indispensable investment in modern precision manufacturing.
Headline
Knowledge
The Core Standard for Life-Critical Systems: A Complete Guide to IPC Classification
In high-risk fields such as medical, aerospace, and automotive, IPC classifications determine PCB reliability and safety. Class 3 represents the highest standard, requiring zero tolerance for defects, complete via filling, adequate copper annular rings, and rigorous inspections to ensure operation under extreme conditions, while Class 2 suits long-term use in non-critical equipment with minor cosmetic flaws allowed. Class 3’s strict criteria cover component placement, soldering, plating thickness, and environmental testing—adding cost and production time, but far outweighing the risks of failure in life- or safety-critical systems. Thus, defining high-risk equipment as Class 3 during design is essential, making IPC classification a core safeguard rather than an option.
Headline
Knowledge
The Power of Color: How the Printing Industry Protects Brand Quality
In the printing industry, color has always been a core element influencing both quality and sensory experience. Whether in packaging, advertising, or publications, color accuracy directly affects consumer perception and trust in a brand. With the rise of digitalization and globalization, companies increasingly demand brand consistency, making color management more than just an aesthetic concern—it is a safeguard for printing quality and brand value. This article explores the importance of color management, the application of ICC color calibration, and Pantone’s role in brand identity, providing a comprehensive overview of the core knowledge and practical value of color management in printing.
Agree