Delving into Precision Stamping Technology
Knowledge

Delving into Precision Stamping Technology

Metal stamping refers to the use of the power of punching machinery and the use of molds as metal plate forming tools to produce punching separation or plastic deformation effects to achieve the production technology of parts in terms of size, shape, and performance requirements.
Published: Oct 12, 2023
Delving into Precision Stamping Technology

What Is Stamping Technology?

Stamping is a manufacturing technology that can make sheets or plates of different thicknesses into the desired shape by mechanical stamping or ramming and does not change the thickness of the original material during the manufacturing process. Stamping technology is widely used in manufacturing engineering for three-dimensional components, cutting, or other special surface requirements.

Freely deformable metal

Metal has excellent strength, so it is often used as a structural member that requires strength. At the same time, we also found that when the applied stress (that is, the force per unit area) exceeds its tensile strength, the metal will not break immediately like brittle materials such as ceramics or bricks, but will deform. That is to say, metal has plasticity, we call it plastic deformation. Every metal has different deformability, the most obvious example is gold. Utilizing the plastic deformation characteristics of metal, the metal is formed into various shapes.

How can we plastically deform the seemingly strong metal? Then you have to use die steel that is stronger than metal. The mold steel is made into upper and lower molds according to the shape to be formed, and then the upper and lower molds are opened and the raw materials are placed, and then the molds are fixed on a device called a punch. Let the punch provide the force required for forming, and drive the mold to close and open the mold up and down. The mold is closed to form the material, and the mold is opened to allow the raw materials to enter and exit. The punch, mold, and raw materials constitute a set of stamping forming systems. Under strong pressure, even very strong metals have to deform with the shape of the mold.

Brief Description of Stamping Process

The most common stamping processes include punching, bending, and drawing. Take the key to be used every day as an example. If you design a lower female mold with the same shape as its inner hole, and an upper punch with the same shape as it but a smaller upper punch, place the sheet on the female mold and use a punch to fix it on the upper punch punches down through the sheet to get the key of the desired shape. Such as the use of automated punch production, two to three hundred pieces or more can be produced in one minute. This is the simplest example of punching. In order to enhance the required functions or quality of the product, some subsequent machining procedures are still needed.

Regarding the bending process, it can be imagined that the upper and lower molds first press the sheet metal with the spring force, and then use the punch to apply force to the part that needs to be bent. An example of the bending process can be illustrated by the strap of a watch. A general metal watchband is made of stainless steel and is divided into two parts, a chain strap, and a buckle. When you look at the fastener, you will find that it contains 3 plates, and the inside of the joint also contains a hosel and a spring. Each piece of the plate must be bent or curled in a certain part for the function of a buckle. A closer inspection will find that it also uses other forming techniques. The part of the chain strap is also a series of punching, bending, and pressing of the plate to make a strap with the function of the chain and beautiful. Of course, if you disassemble the watch, you will find more stamped parts distributed in it. Another common example is the stapler. It is obvious that its structural parts are made by bending metal plates.

Regarding the drawing method, you can imagine a large round plate with a diameter of about 50 cm and a thickness of 0.2 cm. It is placed on a female mold with an inner hole diameter of 30 cm. The plate is pressed by a spring force in the range of 30 to 50 cm in diameter. And then use a punch with a diameter of about 29.6 cm to shape the sheet down. The plate will change from a disc shape to the shape of a can body, and the peripheral material is pulled into the female die hole by the punch to become the straight wall part of the can body. If you think the diameter is too large, you can use another set of female molds and punches with a smaller inner diameter and smaller diameter to form again. Such a forming method is called drawing.

The technology of stamping is not as simple as the above, it includes more different production methods. In order to obtain better quality, every processing method must establish standards or be changed to keep improving. A product is composed of dozens or even hundreds of parts. If the quality of one of the parts is quite different, for example, the size of each is different, then it will be impossible to assemble the product by automated means, or even Manual assembly can't be installed, and it will cause the failure of the product. Therefore, today's industry players are competing for the quality of parts processing and the reduction of manufacturing costs. Those who can produce the same or even higher quality parts at a lower cost will eventually win.

Brief Introduction of Stamping Technology

Regarding the punching process technology, take punching a round hole as an example. Generally, due to the characteristics of the material itself, half of the section of the punching surface is a torn surface. However, the use of round holes often requires that all sections must be smooth. For this requirement, punching technology has developed many different methods, such as punching first, and then scraping to remove the tears left by punching cracked surface. It is also possible to trim the right-angled edge of the punching die into a very small rounded edge or apply a large calculated pressure on the material around the punching part, and then perform precision blanking and punching. Different punching methods have different qualities of punching surface and production cost. The choice of punching method depends on the evaluation and selection of the producer.

When the part is bent, scratches are often caused by the friction between the mold and the material. At this time, you may think that the relative movement between the mold and the sheet should be less than the sliding friction during rolling friction. That's right, adding a roller to the part where the bending punch contacts the blank can effectively improve the scratch problem. In addition, you may also have experience. When you bend something, you will often find that it will bounce back a little bit. This is because every material is elastic. This problem also occurs when the metal is bent. Stamping engineering has also developed various ways to improve this problem.

In order to make the formed parts have the correct dimensions and be perfectly assembled and matched with other parts, the most direct way is to "turn over". For example, if the material rebounds by 2 degrees when bent at a right angle, it can be bent to 88 degrees during bending. When the mold leaves the blank, the workpiece will rebound to the target value of 90 degrees. The material will rebound because of the plastic deformation of the bending part, which causes the internal stress in this area. When the mold is released, the internal stress causes the material to produce a recovery action and cause the rebound. Therefore, the mold is used to compress this area to destroy its stress. Status can also effectively overcome this problem. You can also bend 45 degrees first, and then bend 90 degrees after a part of the rebound. From this, we can discover how engineers try their best to overcome problems when facing problems, and they must conform to the principles of physics even if they are ingenious.

Regarding drawing a cup-shaped tank, imagine how a tank with a larger diameter is willing to shrink into space with a smaller diameter? The outer blank material and the inner tank body resist each other with tension, and improper design will cause the material to break the mold. Therefore, how to choose the gradually smaller diameter and the fillet of the mold entrance, and formulate design criteria with different materials, his deep knowledge in the extension engineering. Under the global competition, in order to improve the quality of products and be competitive at the same time, stamping technology has undergone extreme evolution and development.

Automated production line

When it comes to stamping, we must first understand what is a continuous die? If a complex part requires extremely complicated stamping processing, for example, it requires 10 stamping steps, which may include punching, bending, and drawing. If it is processed separately step by step, 10 types of equipment and 10 manual workers, and each operator needs to feed and unload, obviously, the cost will be high and the production efficiency will be low.

Therefore, under the permission of punching capacity and mold space, rolls can be used as raw materials. The automatic feeder sends the materials to the punching mold for processing. All stamping processes are integrated into a set of molds, and the rolls are quantitatively transferred gradually. Forward. Each amount of blank material will be formed through all the stamping procedures. During the forming process, the blank material will be connected to the belt, and finally punched and separated. In this way, all forming projects can be completed on one punching machine, so the cost, efficiency, and product quality can be greatly improved.

The number of parts that can be produced per minute depends on the product size, shape, and punching equipment capacity, ranging from dozens of pieces to thousands or even 2,000 pieces. Of course, the product must reach a certain number to have economic benefits, so continuous die is the main production type of today's mass production stamping production line.

After decades of development, stamping production technology has developed to the extreme in both breadth and depth. The improvement of punching equipment capabilities and characteristics, the diversity of mold design technology and processing precision, the mastery, and improvement of raw material formability, and the advancement of peripheral technologies such as automation or lubrication and testing constitute a complete and mature processing system, Especially Japan is the most representative.

Punching machines can be divided into two types. They are mechanical and hydraulic power. Metal stamping machines stamp, form, cast, and cut metal plates. In order to form a three-dimensional shape, a complete metal sheet is placed inside the mold, and then a mechanical press is able to make the article. The metal thickness of these plates can reach a quarter of an inch, and they are formed into specially designated shapes of different sizes. Zinc, copper, aluminum, and stainless steel are common metals used in different industries to perform metal stamping procedures.

Presses for metal stampings can manufacture a wide variety of items, and they can perform operations including metal stamping, punching, and four sliding forming operations. Blanking, also known as fine blanking, is usually the first die that is guided to a fully formed part die. The metal imprint is like the title. It can be used to make coins from metal. However, it also has other functions. The forming of the four sliders incorporates a mixture of stamping and framing procedures, making more complex items especially effective for smaller parts.

In recent years, metal stamping has replaced all other metal forming techniques. For example, forging and die-casting processes are being replaced, because metal stamping has relatively low production costs. Articles made by the stamping process can be stronger and more durable than those made in other metal forming methods. Metal stamping is part of a mixed commercial enterprise because these parts can be efficiently produced at a very advantageous rate, which is useful for general production time and expense.

Metal stamping operating:

Metal stamping processes such as bending processing, punching, flange processing, drawing processing, hemming processing, shrinking processing, embossing processing, embossing processing, drawing processing, crimping processing, etc.

Industrial Applications of Metal Stamping Process

Metal stamping can be connected to a huge variety of materials, considering that they are one of the metal processing features of various applications in various industries. The metal stamping process may require forming, forming, and transforming common base metals into uncommon alloys for special preferences related to its application. Several commercial industries require the thermal or electrical conductivity of beryllium copper in various fields, such as aviation, electricity, and defense-related businesses, or the high-quality operation of steel and its numerous automotive composite materials. Metal stamping is used in various industries. Such as agriculture and cultivation, home appliances, weapons and ammunition, aerospace, power storage, building construction, electronics, vehicle industry, lawn equipment, various lighting projects, locking hardware, medical uses, power tools and equipment, marine uses, shipbuilding, water pipes tools, etc., used to manufacture metal parts in various machines in various industries.

Published by Oct 12, 2023 Source: ejournal

Further reading

You might also be interested in ...

Headline
Knowledge
Medical Consumables: Global Guardians of Health
Medical consumables are a wide range of products used by healthcare professionals on a daily basis, typically for a single use before being disposed of. Their primary purpose is to ensure patient care, maintain hygiene, and prevent the spread of infection. These items are crucial for everything from routine checkups to complex surgical procedures.
Headline
Knowledge
Closed Suction System: Revolutionizing Respiratory Care
In critical care, airway management is a vital part of sustaining a patient's life. When patients rely on ventilators, clearing respiratory secretions becomes a crucial aspect of daily care. This seemingly simple, yet critically important, procedure has undergone significant evolution over the past few decades, progressing from early open suctioning to today's more advanced and safer Closed Suction System (CSS).
Headline
Knowledge
Understanding Plastic Materials: A Professional Analysis and Application Guide
Plastic materials, due to their diverse properties and wide range of applications, have become indispensable in modern industries and daily life. Choosing the right plastic material for different needs is crucial for optimizing product performance and achieving environmental benefits. The following is a professional review of the characteristics, applications, and pros and cons of the main plastic materials.
Headline
Knowledge
Exploring Rubber Processing Technology: Core and Challenges of Modern Manufacturing
Rubber processing is one of the most critical stages in modern manufacturing. From vehicle tires to industrial equipment seals and various consumer goods, rubber materials are everywhere. As the demand for high-quality and efficient products rises, rubber processing technologies continue to evolve. This article explores the basic knowledge of rubber processing, key technologies, and future trends.
Headline
Knowledge
Understanding the Coffee Robot: A Comprehensive Analysis
This article provides a comprehensive overview of coffee robots—automated machines that brew and serve coffee using advanced robotics and artificial intelligence. It outlines their key features, including AI-driven customization, app connectivity, 24/7 efficiency, and diverse drink options. The report also examines their growing impact on the coffee industry, highlighting benefits for both consumers and businesses such as convenience, consistency, and reduced labor costs. Case studies like CafeXbot, Artly Coffee, and Rozum Café illustrate how coffee robots are reshaping the coffee experience and driving market growth worldwide.
Headline
Knowledge
Understanding PU Foam: Properties, Types, and Industrial Uses
PU foam is no longer merely a cushioning material. It has become a core functional component across sports, medical, fashion, and lifestyle industries. By adjusting density, thickness, and surface feel, PU can meet diverse requirements for breathability, antimicrobial performance, durability, and comfort. It also aligns with brand trends toward eco-friendly formulations and recyclable material solutions.
Headline
Knowledge
Understanding Helical Filters: A Comprehensive Overview
Helical filters are essential components in radio frequency (RF) and microwave engineering, playing a key role in signal filtering and processing. Known for their compact size, high Q-factor, and broad frequency range, these filters are widely used across various industries. This report provides an in-depth look at helical filters, including their structure, operating principles, advantages, limitations, and typical applications.
Headline
Knowledge
Boost Your Device’s Performance: A Guide to Choosing the Right Power Supply
Choosing the right power supply unit (PSU) is crucial for maximizing your device's performance, ensuring stability, and prolonging the lifespan of your components. A PSU is not just a simple component that provides power; it is the heart of your system that ensures each component receives the right amount of power safely and efficiently. This report will guide you through the essential considerations and steps to select the ideal PSU for your needs.
Headline
Knowledge
How to Choose the Ideal Wood Screws for Furniture and Cabinetry
Selecting the right wood screws is essential to building strong, stable, and visually appealing furniture or cabinets. Key factors include screw size, length, thread type, head style, and compatibility with different wood materials. Coarse threads suit softwoods, while fine threads are better for hardwoods. Choosing the proper head type ensures both function and aesthetics, while accounting for environmental changes helps maintain joint integrity. Pre-drilling pilot holes can also prevent splitting, especially in dense wood. By understanding these considerations, woodworkers can achieve durable, high-quality results in their projects.
Headline
Knowledge
How Effective Coolant Management Promotes Sustainable CNC Machining
Sustainable CNC machining increasingly relies on effective coolant management to reduce environmental impact, cut costs, and improve machining performance. Coolants are essential for lubrication, heat control, and chip removal, but improper handling leads to waste and higher expenses. Proper management practices—such as regular monitoring, filtration, recycling, automation, and using eco-friendly coolants—help extend coolant life, maintain machine health, and ensure consistent product quality. Although initial investment may be a barrier, the long-term benefits include cost savings, reduced waste, and enhanced operational efficiency. Future advancements in IoT and AI are expected to further optimize coolant systems, reinforcing sustainability in CNC machining.
Headline
Knowledge
A Complete Guide to Selecting the Ideal Paper Cups for Hot Beverages
This guide provides a detailed overview of how to choose the best paper cups for hot beverages. It explores the different types of cups—single-wall, double-wall, insulated, and eco-friendly—and explains their unique features and ideal use cases. Key factors to consider include beverage temperature, insulation needs, cup size and lid compatibility, environmental impact, and safety standards. The article also outlines best practices for both consumers and businesses to ensure safe use and responsible disposal. Ultimately, selecting the right paper cup depends on balancing functionality, comfort, sustainability, and cost.
Headline
Knowledge
Understanding the Difference Between Reverse Osmosis and Traditional Water Filters
An in-depth comparison between reverse osmosis (RO) and traditional water filters, two widely used methods for purifying drinking water. It outlines how RO uses a semi-permeable membrane to remove dissolved salts, heavy metals, and microorganisms, making it ideal for areas with highly contaminated water. In contrast, traditional filters rely on physical and chemical filtration - often using activated carbon - to improve taste and remove larger particles. While RO systems offer superior contaminant removal, they come with higher costs and water usage. Traditional filters are more affordable and environmentally friendly but less effective against microscopic impurities. The article concludes that the best choice depends on specific water quality needs, and in some cases, combining both systems can offer the most comprehensive solution.
Agree