Do You Know About Selective Laser Sintering 3D Printing?
Knowledge

Do You Know About Selective Laser Sintering 3D Printing?

Selective laser sintering is an additive manufacturing technology that sinters small particles of polymer powder into a 3D three-dimensional structure through high-power laser light; thus, this is also called selective laser sintering 3D printing, or SLS 3D printing.
Published: Mar 16, 2023
Do You Know About Selective Laser Sintering 3D Printing?

What Is Selective Laser Sintering (SLS)? SLS Printing?

Selective laser sintering (SLS) is an additive manufacturing (AM) technique. The selective laser sintering process uses a laser as energy to make plastic, wax, ceramic, metal, or other composite powder through an infrared laser beam. On the processing platform, the computer analyzes the sliced layer according to the designed 3D model diagram, coordinates path data, with points, lines, and surfaces, and scans the parts that need to be formed layer by layer.

SLS 3D printing has the advantages of low cost, high productivity, and mature and stable material production. It is widely used for fast proofing and customized small batch production. SLS 3D printing machinery, materials, and software are undergoing rapid progress and development.

Principles of SLS Printing Technology

Selective laser sintering (SLS) technology mainly uses the basic principle of high-temperature sintering of powder materials under laser irradiation. It uses a computer to control the light source positioning device to achieve precise positioning, and then sinters and builds layer by layer.

The working process of SLS is like that of 3DP, which is based on a powder bed. The difference is that 3DP uses a binder to bond the powder, while SLS uses an infrared laser to sinter the powder. First, use a powder roller to spread a layer of powder material, heat it to a temperature just below the sintering point of the powder by the constant temperature facility in the printing equipment, and then irradiate the laser beam on the powder layer to make the irradiated powder. The temperature rises above the melting point, sintering and bonding with the formed part below. When a layer is sintered, the printing platform is lowered by the height of the layer thickness, the powder spreading system spreads new powder material on the printing platform and then controls the laser beam to irradiate again for sintering, and so on. The layers are stacked until the printing of the entire three-dimensional object is complete.

Characteristics of SLS Printing

The porosity of a typical SLS printed part is about 30%. Porosity gives SLS parts a unique granular surface finish. This also means that SLS parts can absorb water, so they can be easily dyed in a variety of colors in a hot water bath, and if they are to be used in a humid environment, special post-treatment is required.

Applications of SLS Printing

  • Rapid prototyping: The SLS process can quickly manufacture models, thereby shortening the time from design to seeing the finished product, allowing customers to see the prototype of the final product more quickly and intuitively.
  • Preparation and research and development of new materials: SLS technology can be used to develop some emerging powder particles to enhance the strength of composite materials.
  • Manufacturing and processing of small batches and special parts: When meeting the manufacturing requirements of some small batches and special parts, the cost of manufacturing using traditional methods is often higher, and the use of SLS technology quickly and effectively solve this problem, thereby reducing costs.
  • Rapid mold and tool manufacturing: With the improvement of the technological level, some parts manufactured by SLS 3D printing can be directly used as molds.
  • Reverse engineering: using three-dimensional scanning technology and other technologies, SLS 3D printing can be used to process original parts without drawings and CAD models, and build prototype CAD models according to the final parts, thereby realizing reverse engineering applications.
  • Medical application: parts manufactured by the SLS process have a certain porosity, and they can be used for artificial bone manufacturing. Clinical studies have proven that this artificial bone has better bio-compatibility.
Published by Mar 16, 2023 Source :taiwanteama, Source :kknews

Further reading

You might also be interested in ...

Headline
Knowledge
Medical Consumables: Global Guardians of Health
Medical consumables are a wide range of products used by healthcare professionals on a daily basis, typically for a single use before being disposed of. Their primary purpose is to ensure patient care, maintain hygiene, and prevent the spread of infection. These items are crucial for everything from routine checkups to complex surgical procedures.
Headline
Knowledge
Closed Suction System: Revolutionizing Respiratory Care
In critical care, airway management is a vital part of sustaining a patient's life. When patients rely on ventilators, clearing respiratory secretions becomes a crucial aspect of daily care. This seemingly simple, yet critically important, procedure has undergone significant evolution over the past few decades, progressing from early open suctioning to today's more advanced and safer Closed Suction System (CSS).
Headline
Knowledge
Understanding Plastic Materials: A Professional Analysis and Application Guide
Plastic materials, due to their diverse properties and wide range of applications, have become indispensable in modern industries and daily life. Choosing the right plastic material for different needs is crucial for optimizing product performance and achieving environmental benefits. The following is a professional review of the characteristics, applications, and pros and cons of the main plastic materials.
Headline
Knowledge
Exploring Rubber Processing Technology: Core and Challenges of Modern Manufacturing
Rubber processing is one of the most critical stages in modern manufacturing. From vehicle tires to industrial equipment seals and various consumer goods, rubber materials are everywhere. As the demand for high-quality and efficient products rises, rubber processing technologies continue to evolve. This article explores the basic knowledge of rubber processing, key technologies, and future trends.
Headline
Knowledge
Understanding the Coffee Robot: A Comprehensive Analysis
This article provides a comprehensive overview of coffee robots—automated machines that brew and serve coffee using advanced robotics and artificial intelligence. It outlines their key features, including AI-driven customization, app connectivity, 24/7 efficiency, and diverse drink options. The report also examines their growing impact on the coffee industry, highlighting benefits for both consumers and businesses such as convenience, consistency, and reduced labor costs. Case studies like CafeXbot, Artly Coffee, and Rozum Café illustrate how coffee robots are reshaping the coffee experience and driving market growth worldwide.
Headline
Knowledge
Understanding PU Foam: Properties, Types, and Industrial Uses
PU foam is no longer merely a cushioning material. It has become a core functional component across sports, medical, fashion, and lifestyle industries. By adjusting density, thickness, and surface feel, PU can meet diverse requirements for breathability, antimicrobial performance, durability, and comfort. It also aligns with brand trends toward eco-friendly formulations and recyclable material solutions.
Headline
Knowledge
Understanding Helical Filters: A Comprehensive Overview
Helical filters are essential components in radio frequency (RF) and microwave engineering, playing a key role in signal filtering and processing. Known for their compact size, high Q-factor, and broad frequency range, these filters are widely used across various industries. This report provides an in-depth look at helical filters, including their structure, operating principles, advantages, limitations, and typical applications.
Headline
Knowledge
Boost Your Device’s Performance: A Guide to Choosing the Right Power Supply
Choosing the right power supply unit (PSU) is crucial for maximizing your device's performance, ensuring stability, and prolonging the lifespan of your components. A PSU is not just a simple component that provides power; it is the heart of your system that ensures each component receives the right amount of power safely and efficiently. This report will guide you through the essential considerations and steps to select the ideal PSU for your needs.
Headline
Knowledge
How to Choose the Ideal Wood Screws for Furniture and Cabinetry
Selecting the right wood screws is essential to building strong, stable, and visually appealing furniture or cabinets. Key factors include screw size, length, thread type, head style, and compatibility with different wood materials. Coarse threads suit softwoods, while fine threads are better for hardwoods. Choosing the proper head type ensures both function and aesthetics, while accounting for environmental changes helps maintain joint integrity. Pre-drilling pilot holes can also prevent splitting, especially in dense wood. By understanding these considerations, woodworkers can achieve durable, high-quality results in their projects.
Headline
Knowledge
How Effective Coolant Management Promotes Sustainable CNC Machining
Sustainable CNC machining increasingly relies on effective coolant management to reduce environmental impact, cut costs, and improve machining performance. Coolants are essential for lubrication, heat control, and chip removal, but improper handling leads to waste and higher expenses. Proper management practices—such as regular monitoring, filtration, recycling, automation, and using eco-friendly coolants—help extend coolant life, maintain machine health, and ensure consistent product quality. Although initial investment may be a barrier, the long-term benefits include cost savings, reduced waste, and enhanced operational efficiency. Future advancements in IoT and AI are expected to further optimize coolant systems, reinforcing sustainability in CNC machining.
Headline
Knowledge
A Complete Guide to Selecting the Ideal Paper Cups for Hot Beverages
This guide provides a detailed overview of how to choose the best paper cups for hot beverages. It explores the different types of cups—single-wall, double-wall, insulated, and eco-friendly—and explains their unique features and ideal use cases. Key factors to consider include beverage temperature, insulation needs, cup size and lid compatibility, environmental impact, and safety standards. The article also outlines best practices for both consumers and businesses to ensure safe use and responsible disposal. Ultimately, selecting the right paper cup depends on balancing functionality, comfort, sustainability, and cost.
Headline
Knowledge
Understanding the Difference Between Reverse Osmosis and Traditional Water Filters
An in-depth comparison between reverse osmosis (RO) and traditional water filters, two widely used methods for purifying drinking water. It outlines how RO uses a semi-permeable membrane to remove dissolved salts, heavy metals, and microorganisms, making it ideal for areas with highly contaminated water. In contrast, traditional filters rely on physical and chemical filtration - often using activated carbon - to improve taste and remove larger particles. While RO systems offer superior contaminant removal, they come with higher costs and water usage. Traditional filters are more affordable and environmentally friendly but less effective against microscopic impurities. The article concludes that the best choice depends on specific water quality needs, and in some cases, combining both systems can offer the most comprehensive solution.
Agree