Market Development of Hybrid Electric Vehicle and Electric Vehicle
Knowledge

Market Development of Hybrid Electric Vehicle and Electric Vehicle

In response to energy-saving trends, the automotive industry has developed Hybrid Electric Vehicles and Electric Vehicles. Hybrid electric vehicles and electric vehicles belong to the two major trends of the current Green Car development. According to their design concepts and structural differences, in fact, HEV and EV can each be subdivided into different types.
Published: May 26, 2021
Market Development of Hybrid Electric Vehicle and Electric Vehicle

What are the classifications of oil-electric hybrid systems?

The basic structure of the HEV-Hybrid electric vehicle is the engine + electric motor (two power systems,) plus the control module, battery pack, etc. In terms of the matching method of the power system, it can be divided into three types: series, parallel, and series-parallel.

Hybrid oil-electric power system classification method 1: Series

Series Hybrid -The vehicle is mainly driven by an electric motor, and the engine is only used for power generation and charging.

The series Hybrid design is mainly driven by an electric motor, and the engine's working rate is usually lower than that of the motor. The motor is only used to drive the generator to generate electricity to supply the battery pack. The battery pack supplies the power required for the operation of the motor. Such a design is closer to the basis of EV electric vehicles, except that it has more generator sets (engines) onboard than EV electric vehicles.

The series Hybrid car is driven only by a motor, so its motor specifications are higher and larger. The advantage of this design is that the way to control the driving force is relatively simple. Just like an electric car, it only needs to control the current, and it does not need to be equipped with a gearbox like traditional engine cars. Another advantage is that the engine is only responsible for stable operation and power generation, so it is easier to control its pollution level, and the engine configuration location is also more flexible.

As for the disadvantage of the series Hybrid design, the engine is only used for power generation and charging, so the energy utilization efficiency is low and does not contribute to the performance of the vehicle. The Parallel Hybrid design is currently mostly used in large vehicles, such as Hybrid buses.

Hybrid oil-electric power system classification method 2: Parallel

Parallel Hybrid -The engine is directly connected to the electric motor. The engine is the main driving force and the motor is the auxiliary.

Parallel Hybrid design is characterized by the direct connection between the engine and the motor, and the power output is on the same shaft. In this design, the engine is the main power system that drives the vehicle, and the electric motor is of an auxiliary nature. Because the motor is only an auxiliary position, it is mostly a small-power, miniaturized motor, and the motor is also a generator.

The parallel Hybrid design is based on the power system of the traditional engine. The advantage is that only a disc-shaped motor is added between the engine and the gearbox. The mechanical structure is not changed much from the traditional engine vehicle, so it is easier to implement. The addition of an electric motor can improve some comfort (such as quietness), but the disadvantage is that the motor provides a small fraction of the total power required, so has limited benefits in improving performance. It belongs to the design of Mild Hybrid.

Hybrid oil-electric power system classification method 3: Series and parallel

Series-parallel Hybrid -The THS (Toyota Hybrid System) uses planetary gear mechanisms to connect three power sources: the engine, the No. 1 motor and generator (MG1), and the No. 2 motor and generator (MG2). The three power systems are coordinated by a sophisticated PCU control system to drive the vehicle more efficiently.

Since there are as many as three power sources that make up this Hybrid system, and the motors must switch frequently between the two roles of the motor driving the vehicle or the generator charging the battery pack. Depending on the situation, the biggest challenge lies in the PCU control system. If the PCU is not competent it will cause other problems.

What are the classifications of electric vehicles?

EV Electric Vehicle Classification: Pure Electric Vehicle

As the name implies, an electric vehicle is a vehicle driven by an electric motor with a battery as an energy source. The English name is Electric car, or Electric vehicle, or EV for short. However, in fact, the so-called electric vehicles driven by electric motors have the following major categories:

Pure electric vehicles are only equipped with batteries, which are the only energy source for driving vehicles. Such vehicles are also called Battery only Electric Vehicles, or BEVs for short. (The battery pack must still be connected to an external power supply with a cable for charging.)

EV classification of electric vehicles: Plug-in Electric Vehicles

The Plug-in Hybrid Electric Vehicle, referred to as PHEV should belong to the category of HEV hybrid electric vehicles. It also has two power systems, an engine, and an electric motor, but it has one more set of power systems than HEV hybrid electric vehicles. The charging plug can use exclusive chargers, charging stations, or even household sockets to charge the battery packs on the car. When commuting in the metropolitan area for short-distance use, it can be driven in pure electric mode. In the medium and long-distance, the engine is the main source of power, supplemented by the electric motor, just like the operation mode of the HEV hybrid electric vehicle. Its battery pack capacity is smaller than pure electric vehicles but larger than HEV.

EV Electric Vehicle Classification: Extended Range Engine EV Electric Vehicle. The extended-range engine EV can be represented by the Audi A1 e-Tron. Although the vehicle is fully driven by an electric motor, it is also equipped with a small displacement rotor engine, which is designed to charge the battery pack. It can increase the mileage due to its design, so it is called an extended-range engine electric vehicle.

EV Electric Vehicle Classification: Hydrogen Fuel Cell Electric Vehicle

Hydrogen fuel cell electric vehicles, also known as Fuel Cell Electric Vehicles, (FCEV) use electric motors as power sources. Hydrogen fuel cells use hydrogen or hydrogen-containing substances and oxygen in the air to generate electricity which drives an electric motor to power the vehicle. The threshold for the popularization of fuel cells lies in the storage and replenishment of hydrogen. The production of hydrogen also requires energy consumption and creates carbon emissions.

Solar-powered electric vehicles use solar panels to generate electricity and power motors to drive the vehicles. The seemingly all-natural way to obtain energy is completely subject to weather conditions.

Ultimate Green Car-Pure Electric Car

Pure electric vehicles have the advantages of zero fuel consumption, zero pollution, low noise, etc., and are regarded as a means of transportation in the post-oil era. However, battery technology, including volume reduction, capacity maximization, and fast charging technology etc. still need more critical breakthroughs. Otherwise, they will always be limited by the barriers of excessive weight and volume, and low endurance. Energy replenishment speed, and technological breakthroughs will be needed to achieve popularization.

Development Trends of Hybrid Electric Vehicles

Hybrid electric vehicles have become an international trend, and China's electric vehicle development advantages are also diversified.

Benefiting from China's new version of the new energy vehicle point system and the expansion of the market in Europe, the United States, and Japan, the market business opportunities for gasoline-electric hybrid vehicles have attracted much attention.

The Chinese government announced a new points system in June, and the importance of points for gasoline-electric hybrid vehicles has greatly increased. Originally, gasoline-electric hybrid vehicles were regarded as traditional vehicles in China and were not eligible for points. However, under the new system, they began to have the market value of points. In addition, Volkswagen also announced that in 2020, its mainstream cars will begin to introduce hybrid systems, which will expand the reach of the battery industry from mid-to-high-end cars to popular cars. While electric vehicles still need to overcome the infrastructure problems of the charging environment, traditional gasoline vehicles have begun to set off a wave of hybrid power parity.

The hybrid power market is currently divided into two major mainstreams, namely, the European-based Mild/Micro Hybrid, and the Japanese car manufacturer-based Strong Hybrid. In terms of the development of various countries, the main driving force of the hybrid power market still comes from the stricter emission regulations coming out year by year. Regarding the 48V micro-hybrid system, Europe is expected to fully implement the strict limit on carbon dioxide emissions to not exceed 95g/km from 2020 to 2021. This will especially affect the market for medium-sized mainstream cars which has a larger market share.

The introduction of gasoline-electric hybrid power systems in Europe was slow, as patents and cost were not advantageous. Gasoline vehicles, as well as less modified micro-hybrid/light-hybrid vehicles, that could meet the most basic emission standard requirements, and effectively control cost were the main vehicles manufactured. At present, the use of gasoline-electric hybrid power systems has been gradually extended to mainstream models.

As for Japan, it is mainly based on full hybrid power. Japan will form a market dominated mainly by hybrids and even plug-in hybrid electric vehicles (PHEVs). The main reason is that development is relatively early, so the overall investment in R&D is low to maintain vehicle cost at a mid-range price. With the decline in battery prices, Japanese automakers have also gradually switched from nickel-metal hydride batteries to lithium batteries. With the improvement of the charging environment, they have recently actively switched from mainly hybrid power to plug-in hybrid systems.

In recent years, China has also begun to pay attention to the fuel-saving rate of gasoline vehicles. The Chinese government plans to reduce the average fuel consumption from 6.9 to 5 L/100km from 2015 to 2020. New energy vehicles will become the key to meeting fuel consumption and emission requirements. China has been developing new energy vehicles for a long time but guided by the number of subsidies, most of them are pure electric vehicles. Hybrid power will become the main vehicle type in the European, American, and Japanese markets, and its growth rate will surpass that of pure electric vehicles. Whether China can keep up with the trend of hybrid power, driven by the new point system, will also be a focus of attention in the future.

The overall battery consumption of hybrid electric vehicles has grown by nearly 50%, and car manufacturers will give priority to lithium batteries

In terms of a battery system, although some car manufacturers have developed 12V or 48V micro-hybrid systems, the 48V design can support mild hybrid power. The overall battery design will still retain the 12V battery and will only switch when the load is heavy, such as into 48V to drive air-conditioning compressors. For hybrid vehicles with a voltage system above 12V, lead-acid batteries and lithium batteries can be selected. Lead-acid batteries have a low cost but take up a relatively high space. In order to achieve a lightweight design, most car manufacturers will give priority to lithium batteries for systems with voltages above 12V. Driven by the continued growth of petrol-electric hybrid vehicles above 12V, the overall battery consumption of petrol-electric hybrid vehicles (lithium and nickel-metal hydride batteries, excluding 12V lead-acid) in 2019 increased by 49% compared with last year.

Published by May 26, 2021 Source :mook, Source :energytrend

Further reading

You might also be interested in ...

Headline
Knowledge
Essential for Precision Machining: A Complete Guide to Tungsten Carbide Center Drills
In modern manufacturing, precision is the core standard by which product quality and performance are measured. From aerospace components to medical devices, even a minor deviation can lead to serious consequences. When it comes to precision drilling, a critical challenge is ensuring that a drill bit can be accurately positioned at the start of a cut while maintaining stability during high-intensity operations. The tungsten carbide center drill is the professional tool engineered specifically to solve this problem.
Headline
Knowledge
From Cavitation Effect to Industrial Applications: The Secrets of Ultrasonic Cleaning
When your glasses, tableware, or electronic components are stained with stubborn dirt, what can you do? Traditional methods often require vigorous scrubbing or even harsh chemical solvents, which are not environmentally friendly and may scratch the item. At this moment, ultrasonic cleaning acts like an “invisible little helper”, reaching deep into grooves and gaps to gently yet effectively remove contaminants.
Headline
Knowledge
The “Spark Magician” of Metalworking
Electrical Discharge Machining (EDM) is a non-traditional machining process that removes metal through electrical sparks. Unlike conventional methods, it is not limited by material hardness and can precisely create deep cavities, micro-holes, and complex structures in hardened steel, tungsten carbide, or superalloys. The three main types of EDM include wire cutting, die-sinking, and hole drilling, which are widely applied in mold making, aerospace, automotive, and medical industries. Although EDM has a slower processing speed, works only with conductive materials, and requires consideration of electrode wear and surface treatment, its advantages in high precision, zero cutting force, and superior surface finish make it an indispensable technology in precision manufacturing. Moreover, it continues to evolve in line with the trend toward smart manufacturing.
Headline
Knowledge
Press Brake vs Shearing Machine: Functional and Technical Comparison of Industrial Processing Equipment
Press Brake and Shearing Machine are two essential types of equipment in the field of machine tools, widely used in the processing of metal, wood, and other materials. They play critical roles in manufacturing, enabling efficient and precise material forming and cutting. This article introduces the definitions, functions, technical features, and applications of folding and cutting machines, offering neutral and practical knowledge sharing.
Headline
Knowledge
Master Chuck Types & Selection: The Essential Guide for Machinists
In the world of precision manufacturing, every minute detail can determine the quality of the final product. The chuck is a critical yet often overlooked component—it's not just a tool for holding a workpiece, but the very heart of ensuring machining accuracy, efficiency, and safety. This article will take you on a deep dive into the diverse universe of chucks, covering their operating principles, design philosophies, common types, and how to select the right jaws and chucks for different needs. Whether you're new to the industry or a seasoned engineer, this guide will unlock the intricate secrets of chucks, helping you master every detail on your path to manufacturing success.
Headline
Knowledge
An Overview of Electrical Discharge Machining (EDM)
Electrical Discharge Machining (EDM) is a non-traditional manufacturing process that utilizes electrical sparks to remove material from a workpiece. Unlike conventional machining methods such as milling or turning, which rely on physical contact between a tool and the material, EDM operates without direct contact, making it ideal for processing hard or brittle materials that are difficult to machine otherwise. The process involves generating a series of rapid electrical discharges between an electrode and the workpiece, submerged in a dielectric fluid, which erodes the material through thermal energy. This technique has revolutionized precision manufacturing by enabling the creation of complex geometries with high accuracy.
Headline
Knowledge
Applications of Machine Tools in the Aerospace Industry
The aerospace industry is a highly specialized and technology-driven sector, encompassing the design, manufacturing, and maintenance of aircraft, spacecraft, satellites, and related equipment. Machine tools play a critical role in this field, enabling the precision machining of complex metal and composite material components. These tools enhance production efficiency while ensuring the accuracy and reliability required to meet the stringent safety and performance standards of aerospace. This document outlines the key applications, technologies, benefits, and future trends of machine tools in the aerospace industry.
Headline
Knowledge
Smart Healthcare Uncovered:How AI Is Transforming Clinical Practice?
With the rapid rise of artificial intelligence (AI), the healthcare industry is undergoing a disruptive transformation. AI is significantly improving diagnostic accuracy and treatment efficiency while profoundly redefining healthcare professionals’ roles and patient experiences. A comprehensive understanding of the core technologies and clinical applications behind this transformation is essential for grasping the future trends and strategic directions of smart healthcare.
Headline
Knowledge
Principle and Applications of Laser Cutting Machines
As the global manufacturing industry advances toward higher precision and efficiency, laser cutting technology has become a key enabler of industrial upgrading. Compared with traditional shearing, stamping, and mechanical cutting, laser cutting offers non-contact processing, higher accuracy, and greater flexibility. It significantly improves productivity while reducing secondary finishing. Today, it is widely adopted in metalworking and increasingly applied in electronics, aerospace, medical, and architectural design industries.
Headline
Knowledge
Why Are High-Quality Cutting Fluids Critical for Machining Quality?
In CNC and metalworking, cutting fluid is no longer just a coolant—it plays a critical role by providing lubrication, chip removal, and corrosion protection. With the right formulation and concentration, it can reduce cutting heat, minimize friction, extend tool life, and maintain workpiece accuracy. High-pressure cooling further enhances efficiency in deep-hole and high-speed machining. The pairing of tool material with the proper cutting fluid is equally crucial; correct selection and maintenance ensure process stability, prolong equipment life, and improve the overall work environment. Cutting fluid has become an indispensable investment in modern precision manufacturing.
Headline
Knowledge
Introduction to Emerging Printing Technologies: Opening New Horizons for the Future of Printing
With rapid technological progress and increasingly diverse market demands, traditional printing techniques are no longer sufficient to meet modern industry’s requirements for precision, efficiency, and sustainability. As a result, emerging technologies such as UV printing, 3D printing, and Nanoimprint Lithography (NIL) have risen to prominence, offering solutions with higher precision, broader applications, and lower production costs. These innovations have already demonstrated value across packaging, advertising, healthcare, semiconductors, and construction. In the following sections, we will explore their technical features and real-world applications, highlighting the advantages and future potential of these cutting-edge printing technologies.
Headline
Knowledge
The Core Standard for Life-Critical Systems: A Complete Guide to IPC Classification
In high-risk fields such as medical, aerospace, and automotive, IPC classifications determine PCB reliability and safety. Class 3 represents the highest standard, requiring zero tolerance for defects, complete via filling, adequate copper annular rings, and rigorous inspections to ensure operation under extreme conditions, while Class 2 suits long-term use in non-critical equipment with minor cosmetic flaws allowed. Class 3’s strict criteria cover component placement, soldering, plating thickness, and environmental testing—adding cost and production time, but far outweighing the risks of failure in life- or safety-critical systems. Thus, defining high-risk equipment as Class 3 during design is essential, making IPC classification a core safeguard rather than an option.
Agree