Market Development of Hybrid Electric Vehicle and Electric Vehicle
Knowledge

Market Development of Hybrid Electric Vehicle and Electric Vehicle

In response to energy-saving trends, the automotive industry has developed Hybrid Electric Vehicles and Electric Vehicles. Hybrid electric vehicles and electric vehicles belong to the two major trends of the current Green Car development. According to their design concepts and structural differences, in fact, HEV and EV can each be subdivided into different types.
Published: May 26, 2021
Market Development of Hybrid Electric Vehicle and Electric Vehicle

What are the classifications of oil-electric hybrid systems?

The basic structure of the HEV-Hybrid electric vehicle is the engine + electric motor (two power systems,) plus the control module, battery pack, etc. In terms of the matching method of the power system, it can be divided into three types: series, parallel, and series-parallel.

Hybrid oil-electric power system classification method 1: Series

Series Hybrid -The vehicle is mainly driven by an electric motor, and the engine is only used for power generation and charging.

The series Hybrid design is mainly driven by an electric motor, and the engine's working rate is usually lower than that of the motor. The motor is only used to drive the generator to generate electricity to supply the battery pack. The battery pack supplies the power required for the operation of the motor. Such a design is closer to the basis of EV electric vehicles, except that it has more generator sets (engines) onboard than EV electric vehicles.

The series Hybrid car is driven only by a motor, so its motor specifications are higher and larger. The advantage of this design is that the way to control the driving force is relatively simple. Just like an electric car, it only needs to control the current, and it does not need to be equipped with a gearbox like traditional engine cars. Another advantage is that the engine is only responsible for stable operation and power generation, so it is easier to control its pollution level, and the engine configuration location is also more flexible.

As for the disadvantage of the series Hybrid design, the engine is only used for power generation and charging, so the energy utilization efficiency is low and does not contribute to the performance of the vehicle. The Parallel Hybrid design is currently mostly used in large vehicles, such as Hybrid buses.

Hybrid oil-electric power system classification method 2: Parallel

Parallel Hybrid -The engine is directly connected to the electric motor. The engine is the main driving force and the motor is the auxiliary.

Parallel Hybrid design is characterized by the direct connection between the engine and the motor, and the power output is on the same shaft. In this design, the engine is the main power system that drives the vehicle, and the electric motor is of an auxiliary nature. Because the motor is only an auxiliary position, it is mostly a small-power, miniaturized motor, and the motor is also a generator.

The parallel Hybrid design is based on the power system of the traditional engine. The advantage is that only a disc-shaped motor is added between the engine and the gearbox. The mechanical structure is not changed much from the traditional engine vehicle, so it is easier to implement. The addition of an electric motor can improve some comfort (such as quietness), but the disadvantage is that the motor provides a small fraction of the total power required, so has limited benefits in improving performance. It belongs to the design of Mild Hybrid.

Hybrid oil-electric power system classification method 3: Series and parallel

Series-parallel Hybrid -The THS (Toyota Hybrid System) uses planetary gear mechanisms to connect three power sources: the engine, the No. 1 motor and generator (MG1), and the No. 2 motor and generator (MG2). The three power systems are coordinated by a sophisticated PCU control system to drive the vehicle more efficiently.

Since there are as many as three power sources that make up this Hybrid system, and the motors must switch frequently between the two roles of the motor driving the vehicle or the generator charging the battery pack. Depending on the situation, the biggest challenge lies in the PCU control system. If the PCU is not competent it will cause other problems.

What are the classifications of electric vehicles?

EV Electric Vehicle Classification: Pure Electric Vehicle

As the name implies, an electric vehicle is a vehicle driven by an electric motor with a battery as an energy source. The English name is Electric car, or Electric vehicle, or EV for short. However, in fact, the so-called electric vehicles driven by electric motors have the following major categories:

Pure electric vehicles are only equipped with batteries, which are the only energy source for driving vehicles. Such vehicles are also called Battery only Electric Vehicles, or BEVs for short. (The battery pack must still be connected to an external power supply with a cable for charging.)

EV classification of electric vehicles: Plug-in Electric Vehicles

The Plug-in Hybrid Electric Vehicle, referred to as PHEV should belong to the category of HEV hybrid electric vehicles. It also has two power systems, an engine, and an electric motor, but it has one more set of power systems than HEV hybrid electric vehicles. The charging plug can use exclusive chargers, charging stations, or even household sockets to charge the battery packs on the car. When commuting in the metropolitan area for short-distance use, it can be driven in pure electric mode. In the medium and long-distance, the engine is the main source of power, supplemented by the electric motor, just like the operation mode of the HEV hybrid electric vehicle. Its battery pack capacity is smaller than pure electric vehicles but larger than HEV.

EV Electric Vehicle Classification: Extended Range Engine EV Electric Vehicle. The extended-range engine EV can be represented by the Audi A1 e-Tron. Although the vehicle is fully driven by an electric motor, it is also equipped with a small displacement rotor engine, which is designed to charge the battery pack. It can increase the mileage due to its design, so it is called an extended-range engine electric vehicle.

EV Electric Vehicle Classification: Hydrogen Fuel Cell Electric Vehicle

Hydrogen fuel cell electric vehicles, also known as Fuel Cell Electric Vehicles, (FCEV) use electric motors as power sources. Hydrogen fuel cells use hydrogen or hydrogen-containing substances and oxygen in the air to generate electricity which drives an electric motor to power the vehicle. The threshold for the popularization of fuel cells lies in the storage and replenishment of hydrogen. The production of hydrogen also requires energy consumption and creates carbon emissions.

Solar-powered electric vehicles use solar panels to generate electricity and power motors to drive the vehicles. The seemingly all-natural way to obtain energy is completely subject to weather conditions.

Ultimate Green Car-Pure Electric Car

Pure electric vehicles have the advantages of zero fuel consumption, zero pollution, low noise, etc., and are regarded as a means of transportation in the post-oil era. However, battery technology, including volume reduction, capacity maximization, and fast charging technology etc. still need more critical breakthroughs. Otherwise, they will always be limited by the barriers of excessive weight and volume, and low endurance. Energy replenishment speed, and technological breakthroughs will be needed to achieve popularization.

Development Trends of Hybrid Electric Vehicles

Hybrid electric vehicles have become an international trend, and China's electric vehicle development advantages are also diversified.

Benefiting from China's new version of the new energy vehicle point system and the expansion of the market in Europe, the United States, and Japan, the market business opportunities for gasoline-electric hybrid vehicles have attracted much attention.

The Chinese government announced a new points system in June, and the importance of points for gasoline-electric hybrid vehicles has greatly increased. Originally, gasoline-electric hybrid vehicles were regarded as traditional vehicles in China and were not eligible for points. However, under the new system, they began to have the market value of points. In addition, Volkswagen also announced that in 2020, its mainstream cars will begin to introduce hybrid systems, which will expand the reach of the battery industry from mid-to-high-end cars to popular cars. While electric vehicles still need to overcome the infrastructure problems of the charging environment, traditional gasoline vehicles have begun to set off a wave of hybrid power parity.

The hybrid power market is currently divided into two major mainstreams, namely, the European-based Mild/Micro Hybrid, and the Japanese car manufacturer-based Strong Hybrid. In terms of the development of various countries, the main driving force of the hybrid power market still comes from the stricter emission regulations coming out year by year. Regarding the 48V micro-hybrid system, Europe is expected to fully implement the strict limit on carbon dioxide emissions to not exceed 95g/km from 2020 to 2021. This will especially affect the market for medium-sized mainstream cars which has a larger market share.

The introduction of gasoline-electric hybrid power systems in Europe was slow, as patents and cost were not advantageous. Gasoline vehicles, as well as less modified micro-hybrid/light-hybrid vehicles, that could meet the most basic emission standard requirements, and effectively control cost were the main vehicles manufactured. At present, the use of gasoline-electric hybrid power systems has been gradually extended to mainstream models.

As for Japan, it is mainly based on full hybrid power. Japan will form a market dominated mainly by hybrids and even plug-in hybrid electric vehicles (PHEVs). The main reason is that development is relatively early, so the overall investment in R&D is low to maintain vehicle cost at a mid-range price. With the decline in battery prices, Japanese automakers have also gradually switched from nickel-metal hydride batteries to lithium batteries. With the improvement of the charging environment, they have recently actively switched from mainly hybrid power to plug-in hybrid systems.

In recent years, China has also begun to pay attention to the fuel-saving rate of gasoline vehicles. The Chinese government plans to reduce the average fuel consumption from 6.9 to 5 L/100km from 2015 to 2020. New energy vehicles will become the key to meeting fuel consumption and emission requirements. China has been developing new energy vehicles for a long time but guided by the number of subsidies, most of them are pure electric vehicles. Hybrid power will become the main vehicle type in the European, American, and Japanese markets, and its growth rate will surpass that of pure electric vehicles. Whether China can keep up with the trend of hybrid power, driven by the new point system, will also be a focus of attention in the future.

The overall battery consumption of hybrid electric vehicles has grown by nearly 50%, and car manufacturers will give priority to lithium batteries

In terms of a battery system, although some car manufacturers have developed 12V or 48V micro-hybrid systems, the 48V design can support mild hybrid power. The overall battery design will still retain the 12V battery and will only switch when the load is heavy, such as into 48V to drive air-conditioning compressors. For hybrid vehicles with a voltage system above 12V, lead-acid batteries and lithium batteries can be selected. Lead-acid batteries have a low cost but take up a relatively high space. In order to achieve a lightweight design, most car manufacturers will give priority to lithium batteries for systems with voltages above 12V. Driven by the continued growth of petrol-electric hybrid vehicles above 12V, the overall battery consumption of petrol-electric hybrid vehicles (lithium and nickel-metal hydride batteries, excluding 12V lead-acid) in 2019 increased by 49% compared with last year.

Published by May 26, 2021 Source :mook, Source :energytrend

Further reading

You might also be interested in ...

Headline
Knowledge
Medical Consumables: Global Guardians of Health
Medical consumables are a wide range of products used by healthcare professionals on a daily basis, typically for a single use before being disposed of. Their primary purpose is to ensure patient care, maintain hygiene, and prevent the spread of infection. These items are crucial for everything from routine checkups to complex surgical procedures.
Headline
Knowledge
Closed Suction System: Revolutionizing Respiratory Care
In critical care, airway management is a vital part of sustaining a patient's life. When patients rely on ventilators, clearing respiratory secretions becomes a crucial aspect of daily care. This seemingly simple, yet critically important, procedure has undergone significant evolution over the past few decades, progressing from early open suctioning to today's more advanced and safer Closed Suction System (CSS).
Headline
Knowledge
Understanding Plastic Materials: A Professional Analysis and Application Guide
Plastic materials, due to their diverse properties and wide range of applications, have become indispensable in modern industries and daily life. Choosing the right plastic material for different needs is crucial for optimizing product performance and achieving environmental benefits. The following is a professional review of the characteristics, applications, and pros and cons of the main plastic materials.
Headline
Knowledge
Exploring Rubber Processing Technology: Core and Challenges of Modern Manufacturing
Rubber processing is one of the most critical stages in modern manufacturing. From vehicle tires to industrial equipment seals and various consumer goods, rubber materials are everywhere. As the demand for high-quality and efficient products rises, rubber processing technologies continue to evolve. This article explores the basic knowledge of rubber processing, key technologies, and future trends.
Headline
Knowledge
Understanding the Coffee Robot: A Comprehensive Analysis
This article provides a comprehensive overview of coffee robots—automated machines that brew and serve coffee using advanced robotics and artificial intelligence. It outlines their key features, including AI-driven customization, app connectivity, 24/7 efficiency, and diverse drink options. The report also examines their growing impact on the coffee industry, highlighting benefits for both consumers and businesses such as convenience, consistency, and reduced labor costs. Case studies like CafeXbot, Artly Coffee, and Rozum Café illustrate how coffee robots are reshaping the coffee experience and driving market growth worldwide.
Headline
Knowledge
Understanding PU Foam: Properties, Types, and Industrial Uses
PU foam is no longer merely a cushioning material. It has become a core functional component across sports, medical, fashion, and lifestyle industries. By adjusting density, thickness, and surface feel, PU can meet diverse requirements for breathability, antimicrobial performance, durability, and comfort. It also aligns with brand trends toward eco-friendly formulations and recyclable material solutions.
Headline
Knowledge
Understanding Helical Filters: A Comprehensive Overview
Helical filters are essential components in radio frequency (RF) and microwave engineering, playing a key role in signal filtering and processing. Known for their compact size, high Q-factor, and broad frequency range, these filters are widely used across various industries. This report provides an in-depth look at helical filters, including their structure, operating principles, advantages, limitations, and typical applications.
Headline
Knowledge
Boost Your Device’s Performance: A Guide to Choosing the Right Power Supply
Choosing the right power supply unit (PSU) is crucial for maximizing your device's performance, ensuring stability, and prolonging the lifespan of your components. A PSU is not just a simple component that provides power; it is the heart of your system that ensures each component receives the right amount of power safely and efficiently. This report will guide you through the essential considerations and steps to select the ideal PSU for your needs.
Headline
Knowledge
How to Choose the Ideal Wood Screws for Furniture and Cabinetry
Selecting the right wood screws is essential to building strong, stable, and visually appealing furniture or cabinets. Key factors include screw size, length, thread type, head style, and compatibility with different wood materials. Coarse threads suit softwoods, while fine threads are better for hardwoods. Choosing the proper head type ensures both function and aesthetics, while accounting for environmental changes helps maintain joint integrity. Pre-drilling pilot holes can also prevent splitting, especially in dense wood. By understanding these considerations, woodworkers can achieve durable, high-quality results in their projects.
Headline
Knowledge
How Effective Coolant Management Promotes Sustainable CNC Machining
Sustainable CNC machining increasingly relies on effective coolant management to reduce environmental impact, cut costs, and improve machining performance. Coolants are essential for lubrication, heat control, and chip removal, but improper handling leads to waste and higher expenses. Proper management practices—such as regular monitoring, filtration, recycling, automation, and using eco-friendly coolants—help extend coolant life, maintain machine health, and ensure consistent product quality. Although initial investment may be a barrier, the long-term benefits include cost savings, reduced waste, and enhanced operational efficiency. Future advancements in IoT and AI are expected to further optimize coolant systems, reinforcing sustainability in CNC machining.
Headline
Knowledge
A Complete Guide to Selecting the Ideal Paper Cups for Hot Beverages
This guide provides a detailed overview of how to choose the best paper cups for hot beverages. It explores the different types of cups—single-wall, double-wall, insulated, and eco-friendly—and explains their unique features and ideal use cases. Key factors to consider include beverage temperature, insulation needs, cup size and lid compatibility, environmental impact, and safety standards. The article also outlines best practices for both consumers and businesses to ensure safe use and responsible disposal. Ultimately, selecting the right paper cup depends on balancing functionality, comfort, sustainability, and cost.
Headline
Knowledge
Understanding the Difference Between Reverse Osmosis and Traditional Water Filters
An in-depth comparison between reverse osmosis (RO) and traditional water filters, two widely used methods for purifying drinking water. It outlines how RO uses a semi-permeable membrane to remove dissolved salts, heavy metals, and microorganisms, making it ideal for areas with highly contaminated water. In contrast, traditional filters rely on physical and chemical filtration - often using activated carbon - to improve taste and remove larger particles. While RO systems offer superior contaminant removal, they come with higher costs and water usage. Traditional filters are more affordable and environmentally friendly but less effective against microscopic impurities. The article concludes that the best choice depends on specific water quality needs, and in some cases, combining both systems can offer the most comprehensive solution.
Agree