What is Hyperautomation?
Knowledge

What is Hyperautomation?

Hyperautomation is the use of the power of multiple technologies to achieve end-to-end automation. Hyperautomation is the process of continuously integrating automation into an organization's business processes, combining advanced technologies such as robotic process automation (RPA), artificial intelligence, and machine learning to enhance the results of human work. Not only does it automate key processes, but it also builds an automation ecosystem that finds more processes that can be automated without human intervention.
Published: Sep 07, 2022
What is Hyperautomation?

Hyperautomation is an extension of traditional business process automation that goes beyond the confines of a single process. By combining AI tools with RPA, hyperautomation can automate nearly all repetitive tasks for business users. Even take automation to the next level and automate it: dynamically explore business processes and build bots to automate them. Hyperautomation is one of Gartner's top 10 strategic technologies of the year trends. With a range of tools such as Robotic Process Automation (RPA), Machine Learning (ML), Artificial Intelligence (AI), and more that work in unison to automate complex business processes (including where subject matter experts were once required), hyperautomation is a reality. A means of true digital transformation.

How Does Hyperautomation Work?

According to Gartner, RPA is the core technology for hyperautomation as AI and ML are more advanced. The combination of RPA and AI technologies provides the power and flexibility to automate unprecedented: recordless processes that rely on unstructured data input.

What Advantages Can Hyperautomation Bring?

Speed up complex work

By automating more and more complex jobs that rely on the input of human knowledge, hyperautomation acts as a highway, enabling everyone to participate in business transformation.

Deploy digital staff

RPA uses smart technology to make functions more sophisticated, thereby creating a smart digital workforce that can take on repetitive tasks and improve employee performance. These digital workers are hyperautomated agents of change, able to connect to a variety of business applications, operate with structured and unstructured data, analyze data and make decisions, and explore processes and new automation opportunities.

The Power of Artificial Intelligence (AI)

Artificial intelligence is what differentiates the digital workforce from standard automation approaches, making RPA + AI an essential element of hyperautomation. Hyper-automation technology can discover and automate previously inaccessible data and processes, thereby providing another unique advantage: the creation of a Digital Doppelganger (DTO) of the organization. How does this help? DTOs bring transparency to previously unseen interactions between processes, functions and KPIs. Imagine using intelligence to respond quickly and identify new opportunities while witnessing business value creation happening (or not).

What is the Difference between Hyperautomation and Intelligent Process Automation?

Hyperautomation includes increasing the automation of business processes through the introduction of artificial intelligence (AI), machine learning (ML), and robotic process automation (RPA). Almost all repetitive tasks can be automated, and it is even possible to figure out which processes can be automated and build bots to perform them.

Hyperautomation is an advanced technological infrastructure for extending automation capabilities in an organization. It will further automate already automated processes, enabling business operations to exceed individual contributions.

These automation technologies include robotic process automation (RPA), artificial intelligence (AI), machine learning, process mapping, and other tools that identify time-consuming business processes and establish ways to automate them.

On the other hand, intelligent automation also includes tools such as optical character recognition (OCR), artificial intelligence and machine learning algorithms to simulate human behavior and intelligence. This type of automation allows businesses to handle complex actions without requiring manual input, analysis, or decision-making.

While it's easy to confuse smart automation and hyperautomation, it's more accurate to think of the former as a subcategory of the latter. Smarter automation is just one aspect of hyperautomation technology that includes RPA, natural language processing (NLP), digital process automation, decision management structures, and intelligent business process management (IBPMS) infrastructure.

Why Should Organizations Embrace Hyperautomation?

Hyperautomation is one of the hottest strategic technology trends of 2020, and while automation is a familiar term, hyperautomation is still a new concept for many organizations.

Building a hyper-automated system is a challenging task, but it has many benefits, such as automating repetitive tasks to increase labor efficiency. Hyperautomation can help employees focus on more interesting and challenging tasks and reduce the chance of human error and decision bias.

Competitive industries such as finance are already adopting hyperautomation strategies, and organizations that are using remote process automation are only a few steps away from hyperautomation, so they should work on integrating AI and machine learning into their automation frameworks, to reap the benefits of hyperautomation.

Published by Sep 07, 2022 Source :Automation Anywhere, Source :TIBCO

Further reading

You might also be interested in ...

Headline
Knowledge
Essential for Precision Machining: A Complete Guide to Tungsten Carbide Center Drills
In modern manufacturing, precision is the core standard by which product quality and performance are measured. From aerospace components to medical devices, even a minor deviation can lead to serious consequences. When it comes to precision drilling, a critical challenge is ensuring that a drill bit can be accurately positioned at the start of a cut while maintaining stability during high-intensity operations. The tungsten carbide center drill is the professional tool engineered specifically to solve this problem.
Headline
Knowledge
From Cavitation Effect to Industrial Applications: The Secrets of Ultrasonic Cleaning
When your glasses, tableware, or electronic components are stained with stubborn dirt, what can you do? Traditional methods often require vigorous scrubbing or even harsh chemical solvents, which are not environmentally friendly and may scratch the item. At this moment, ultrasonic cleaning acts like an “invisible little helper”, reaching deep into grooves and gaps to gently yet effectively remove contaminants.
Headline
Knowledge
The “Spark Magician” of Metalworking
Electrical Discharge Machining (EDM) is a non-traditional machining process that removes metal through electrical sparks. Unlike conventional methods, it is not limited by material hardness and can precisely create deep cavities, micro-holes, and complex structures in hardened steel, tungsten carbide, or superalloys. The three main types of EDM include wire cutting, die-sinking, and hole drilling, which are widely applied in mold making, aerospace, automotive, and medical industries. Although EDM has a slower processing speed, works only with conductive materials, and requires consideration of electrode wear and surface treatment, its advantages in high precision, zero cutting force, and superior surface finish make it an indispensable technology in precision manufacturing. Moreover, it continues to evolve in line with the trend toward smart manufacturing.
Headline
Knowledge
Press Brake vs Shearing Machine: Functional and Technical Comparison of Industrial Processing Equipment
Press Brake and Shearing Machine are two essential types of equipment in the field of machine tools, widely used in the processing of metal, wood, and other materials. They play critical roles in manufacturing, enabling efficient and precise material forming and cutting. This article introduces the definitions, functions, technical features, and applications of folding and cutting machines, offering neutral and practical knowledge sharing.
Headline
Knowledge
An Overview of Electrical Discharge Machining (EDM)
Electrical Discharge Machining (EDM) is a non-traditional manufacturing process that utilizes electrical sparks to remove material from a workpiece. Unlike conventional machining methods such as milling or turning, which rely on physical contact between a tool and the material, EDM operates without direct contact, making it ideal for processing hard or brittle materials that are difficult to machine otherwise. The process involves generating a series of rapid electrical discharges between an electrode and the workpiece, submerged in a dielectric fluid, which erodes the material through thermal energy. This technique has revolutionized precision manufacturing by enabling the creation of complex geometries with high accuracy.
Headline
Knowledge
Applications of Machine Tools in the Aerospace Industry
The aerospace industry is a highly specialized and technology-driven sector, encompassing the design, manufacturing, and maintenance of aircraft, spacecraft, satellites, and related equipment. Machine tools play a critical role in this field, enabling the precision machining of complex metal and composite material components. These tools enhance production efficiency while ensuring the accuracy and reliability required to meet the stringent safety and performance standards of aerospace. This document outlines the key applications, technologies, benefits, and future trends of machine tools in the aerospace industry.
Headline
Knowledge
Smart Healthcare Uncovered:How AI Is Transforming Clinical Practice?
With the rapid rise of artificial intelligence (AI), the healthcare industry is undergoing a disruptive transformation. AI is significantly improving diagnostic accuracy and treatment efficiency while profoundly redefining healthcare professionals’ roles and patient experiences. A comprehensive understanding of the core technologies and clinical applications behind this transformation is essential for grasping the future trends and strategic directions of smart healthcare.
Headline
Knowledge
Principle and Applications of Laser Cutting Machines
As the global manufacturing industry advances toward higher precision and efficiency, laser cutting technology has become a key enabler of industrial upgrading. Compared with traditional shearing, stamping, and mechanical cutting, laser cutting offers non-contact processing, higher accuracy, and greater flexibility. It significantly improves productivity while reducing secondary finishing. Today, it is widely adopted in metalworking and increasingly applied in electronics, aerospace, medical, and architectural design industries.
Headline
Knowledge
Why Are High-Quality Cutting Fluids Critical for Machining Quality?
In CNC and metalworking, cutting fluid is no longer just a coolant—it plays a critical role by providing lubrication, chip removal, and corrosion protection. With the right formulation and concentration, it can reduce cutting heat, minimize friction, extend tool life, and maintain workpiece accuracy. High-pressure cooling further enhances efficiency in deep-hole and high-speed machining. The pairing of tool material with the proper cutting fluid is equally crucial; correct selection and maintenance ensure process stability, prolong equipment life, and improve the overall work environment. Cutting fluid has become an indispensable investment in modern precision manufacturing.
Headline
Knowledge
Introduction to Emerging Printing Technologies: Opening New Horizons for the Future of Printing
With rapid technological progress and increasingly diverse market demands, traditional printing techniques are no longer sufficient to meet modern industry’s requirements for precision, efficiency, and sustainability. As a result, emerging technologies such as UV printing, 3D printing, and Nanoimprint Lithography (NIL) have risen to prominence, offering solutions with higher precision, broader applications, and lower production costs. These innovations have already demonstrated value across packaging, advertising, healthcare, semiconductors, and construction. In the following sections, we will explore their technical features and real-world applications, highlighting the advantages and future potential of these cutting-edge printing technologies.
Headline
Knowledge
The Core Standard for Life-Critical Systems: A Complete Guide to IPC Classification
In high-risk fields such as medical, aerospace, and automotive, IPC classifications determine PCB reliability and safety. Class 3 represents the highest standard, requiring zero tolerance for defects, complete via filling, adequate copper annular rings, and rigorous inspections to ensure operation under extreme conditions, while Class 2 suits long-term use in non-critical equipment with minor cosmetic flaws allowed. Class 3’s strict criteria cover component placement, soldering, plating thickness, and environmental testing—adding cost and production time, but far outweighing the risks of failure in life- or safety-critical systems. Thus, defining high-risk equipment as Class 3 during design is essential, making IPC classification a core safeguard rather than an option.
Headline
Knowledge
The Power of Color: How the Printing Industry Protects Brand Quality
In the printing industry, color has always been a core element influencing both quality and sensory experience. Whether in packaging, advertising, or publications, color accuracy directly affects consumer perception and trust in a brand. With the rise of digitalization and globalization, companies increasingly demand brand consistency, making color management more than just an aesthetic concern—it is a safeguard for printing quality and brand value. This article explores the importance of color management, the application of ICC color calibration, and Pantone’s role in brand identity, providing a comprehensive overview of the core knowledge and practical value of color management in printing.
Agree