What Does Internet of Things Mean? What Are Some Examples of Its Applications in Life?
Knowledge

What Does Internet of Things Mean? What Are Some Examples of Its Applications in Life?

Industry 4.0 has become an increasingly important topic of concern. Within Industry 4.0, the Internet of Things (IoT) plays an important core role in connecting the entire system, and has developed a wide range of applications. Many people may think that the IoT is far away and does not concern them, but in fact, there are many applications of the IoT in use in everyday life which most people may not realize. This article will share what the IoT is and its application in life.
Published: Apr 28, 2022
What Does Internet of Things Mean? What Are Some Examples of Its Applications in Life?

What is the Internet of Things, IoT?

The Internet of things (IoT) is an interconnected system of computing devices, equipment, and digital machines that digitize the real world. Simply put, it uses digital data to connect items through the Internet, so information can be transmitted and shared. The IoT has actually existed for a long time, with the first application originating in the 1980s. A Coke vending machine was connected to the Internet so that the number of Coke drinks remaining in the vending machine could be checked. With the evolution of technology, smaller, stronger processors have been developed for use in transportation logistics, industrial manufacturing, health care, personal or social fields, etc.

In its broadest sense, the IoT includes any “object” or "thing" that can be connected to the Internet. This may include anything from factory equipment and cars to mobile devices and smart watches. Today’s IoT however, has grown to include interconnected devices that combine sensors, software, and other technologies to transmit and receive data between the devices. Connectivity has traditionally been by Wi-Fi, but now 5G and other types of networking platforms have gradually provided the speed and reliability to handle larger data sets. Of course, the point of collecting data is not just to have it, but to use it. While IoT devices collect and transmit data, the ultimate goal is to analyze the data and develop an informed strategy for action. AI technology excels at enhancing IoT networks through advanced analytics and machine learning.

How the IoT Works

A complete IoT system combines three elements: sensors, the Internet, and data processing. Data is collected through sensors and connected to the network via Wi-Fi, Bluetooth, or ethernet. The data is then transmitted to the cloud, where it is processed by software, and finally transmitted to the user. Combined with artificial intelligence (AI) or machine learning, the collected data can be deeply analyzed during the process. There are also many devices today that can coordinate data, and determine better actions to take based on the mutual benefits of the data collected.

Pros and Cons of IoT

Regardless of the technology being used, there will always be advantages and disadvantages. What matters is how the technology can be best used for the greatest benefit. The IoT can automate work, improve work efficiency, reduce equipment and setup costs, and assist in collecting data to save time and money. One challenge for IoT devices is that they are not always easy to manage, and devices from different manufacturers may not be able to communicate with each other. As more and more data is collected, consideration for information security will become more important.

IoT Applications

The IoT has allowed for remote monitoring of cars, homes and health systems. Many home appliances can be controlled through mobile phones. Applications can allow users to improve their quality of life, and enable the elderly and disabled to live more convenient lives.

Smart Manufacturing, Industry 4.0: The IoT used in industry is called the Industrial Internet of Things (IIoT). It connects sensors, meters, equipment and computers through the internet and collects data and analyzes it. This increases productivity and efficiency through a high degree of automation.

Smart City: The IoT can use technology and data to solve problems in cities, thereby improving the quality of life. In Taichung for example, the city has set up 500 "air monitors" in air pollution hotspots. These monitors collect data that locate pollution sources so the management of air pollution can be improved. There are also parking apps that help the public quickly find parking spaces.

Retail: The retail industry is an industry that requires extensive interaction with consumers. Customized marketing, stocking of shelves, checkout, and other retail operations use sensors and data sharing devices that optimize customer experience and improve in-store operations. The Internet of Things can improve the efficiency of supply chain operations and provide a higher value service experience.

Smart Home: A smart home uses the internet to integrate building systems, equipment, and appliances to improve life quality, reduce living costs, provide home care, enhance entertainment and ensure home safety. It can adapt to different lifestyles, such as for the elderly or children, to create a safe, comfortable and environmentally friendly living environment.

Smart Transportation: Technologies such as sensing and processing of traffic information, and electronics control and management can be used to assist vehicles and transportation systems. Safety and efficiency of transportation services can be improved to respond to real time situations.

The rapid development of IoT Technology has the potential to impact many industries. Through the use of unmanned vehicles and computers, improved logistics can save human resources and make many labor-intensive operations more efficient. Companies that grasp the importance of this trend can take advantage of new opportunities to grow and dominate the market.

How Will IoT Technology Evolve?

In 2019, IoT devices generated about 18 ZB of data, and by 2025, International Data Corporation expects that number to more than triple to 73 ZB, or 73 billion terabytes. Although we can't measure digital data in physical units, to give an illustration, if all this data were converted to 1990s disks and laid side by side, they could go back and forth from the earth to the moon more than 5,000 times. Developing the IoT will require combining technologies to condense the storage of these large amounts of data.

Connectivity: This surge in IoT data volume requires strong network connectivity to transmit and receive data. Although many IoT devices rely on local Wi-Fi networks to transmit complex and large amounts of data, the cloud and 5G cellular networks are continually evolving to better transmit the ever growing volume of data. Mobile networks will continue to develop as more and more IoT devices disconnect from Wi-Fi networks.

Sensing Technology: As the demand for IoT sensor innovation steadily grows, the market is shifting from a few high-priced niche suppliers to a highly globalized and price-competitive sensor manufacturing industry. The average price of IoT sensors has dropped by more than 70% since 2004, and as demand has skyrocketed, so has the functionality and variety of these products.

Computing Power: The amount of data created in the next three years will exceed the amount created in the past 30 years. To harness this data, modern businesses require ever-increasing amounts of memory and processing power, and the fast-paced and competitive race to achieve this has driven the growth of IoT's usefulness and applicability.

Artificial Intelligence and Machine Learning: These technologies not only allow businesses to manage and process vast amounts of IoT data, but also analyze and learn from it. Big data is the best nutrient for AI and machine learning. The larger and more diverse the data set, the more reliable insights and information can be provided by advanced AI-based analytics. The rise of IoT devices has given a huge boost to the development of artificial intelligence and the amount of data used and provided.

Cloud Computing: Just as connectivity is an integral part of IoT development, the rise of cloud computing is also closely related to this trend. With on-demand processing power and massive storage space, IoT devices are also beginning to adopt cloud IoT services to collect and transmit increasingly large and complex data sets. With private cloud solutions, enterprises can manage larger volumes and types IoT data, while maintaining the security of closed systems.

Edge Computing: Devices within an IoT network are typically distributed in various geographic locations, but all transmit data to a single central system. With the growing volume of IoT data, IoT is starting to drain companies' bandwidth and cloud capacity. In addition, significant time is required to capture, transmit, process and receive data at its final destination, and this delay can further reduce efficiency, especially for businesses that are highly time-sensitive to data processing. Edge computing solutions share the processing pressure of the system by being close to the source of the data by integrating localized computing systems and enabling IoT devices to have the processing power themselves. Data processed by the device is immediately acted upon on-site and periodically transmitted to a central system in a more structured and organized format for advanced analysis and processing.

Published by Apr 28, 2022 Source :Machsync, Source :SAP

Further reading

You might also be interested in ...

Headline
Knowledge
Medical Consumables: Global Guardians of Health
Medical consumables are a wide range of products used by healthcare professionals on a daily basis, typically for a single use before being disposed of. Their primary purpose is to ensure patient care, maintain hygiene, and prevent the spread of infection. These items are crucial for everything from routine checkups to complex surgical procedures.
Headline
Knowledge
Closed Suction System: Revolutionizing Respiratory Care
In critical care, airway management is a vital part of sustaining a patient's life. When patients rely on ventilators, clearing respiratory secretions becomes a crucial aspect of daily care. This seemingly simple, yet critically important, procedure has undergone significant evolution over the past few decades, progressing from early open suctioning to today's more advanced and safer Closed Suction System (CSS).
Headline
Knowledge
Understanding Plastic Materials: A Professional Analysis and Application Guide
Plastic materials, due to their diverse properties and wide range of applications, have become indispensable in modern industries and daily life. Choosing the right plastic material for different needs is crucial for optimizing product performance and achieving environmental benefits. The following is a professional review of the characteristics, applications, and pros and cons of the main plastic materials.
Headline
Knowledge
Exploring Rubber Processing Technology: Core and Challenges of Modern Manufacturing
Rubber processing is one of the most critical stages in modern manufacturing. From vehicle tires to industrial equipment seals and various consumer goods, rubber materials are everywhere. As the demand for high-quality and efficient products rises, rubber processing technologies continue to evolve. This article explores the basic knowledge of rubber processing, key technologies, and future trends.
Headline
Knowledge
Understanding the Coffee Robot: A Comprehensive Analysis
This article provides a comprehensive overview of coffee robots—automated machines that brew and serve coffee using advanced robotics and artificial intelligence. It outlines their key features, including AI-driven customization, app connectivity, 24/7 efficiency, and diverse drink options. The report also examines their growing impact on the coffee industry, highlighting benefits for both consumers and businesses such as convenience, consistency, and reduced labor costs. Case studies like CafeXbot, Artly Coffee, and Rozum Café illustrate how coffee robots are reshaping the coffee experience and driving market growth worldwide.
Headline
Knowledge
Understanding PU Foam: Properties, Types, and Industrial Uses
PU foam is no longer merely a cushioning material. It has become a core functional component across sports, medical, fashion, and lifestyle industries. By adjusting density, thickness, and surface feel, PU can meet diverse requirements for breathability, antimicrobial performance, durability, and comfort. It also aligns with brand trends toward eco-friendly formulations and recyclable material solutions.
Headline
Knowledge
Understanding Helical Filters: A Comprehensive Overview
Helical filters are essential components in radio frequency (RF) and microwave engineering, playing a key role in signal filtering and processing. Known for their compact size, high Q-factor, and broad frequency range, these filters are widely used across various industries. This report provides an in-depth look at helical filters, including their structure, operating principles, advantages, limitations, and typical applications.
Headline
Knowledge
Boost Your Device’s Performance: A Guide to Choosing the Right Power Supply
Choosing the right power supply unit (PSU) is crucial for maximizing your device's performance, ensuring stability, and prolonging the lifespan of your components. A PSU is not just a simple component that provides power; it is the heart of your system that ensures each component receives the right amount of power safely and efficiently. This report will guide you through the essential considerations and steps to select the ideal PSU for your needs.
Headline
Knowledge
How to Choose the Ideal Wood Screws for Furniture and Cabinetry
Selecting the right wood screws is essential to building strong, stable, and visually appealing furniture or cabinets. Key factors include screw size, length, thread type, head style, and compatibility with different wood materials. Coarse threads suit softwoods, while fine threads are better for hardwoods. Choosing the proper head type ensures both function and aesthetics, while accounting for environmental changes helps maintain joint integrity. Pre-drilling pilot holes can also prevent splitting, especially in dense wood. By understanding these considerations, woodworkers can achieve durable, high-quality results in their projects.
Headline
Knowledge
How Effective Coolant Management Promotes Sustainable CNC Machining
Sustainable CNC machining increasingly relies on effective coolant management to reduce environmental impact, cut costs, and improve machining performance. Coolants are essential for lubrication, heat control, and chip removal, but improper handling leads to waste and higher expenses. Proper management practices—such as regular monitoring, filtration, recycling, automation, and using eco-friendly coolants—help extend coolant life, maintain machine health, and ensure consistent product quality. Although initial investment may be a barrier, the long-term benefits include cost savings, reduced waste, and enhanced operational efficiency. Future advancements in IoT and AI are expected to further optimize coolant systems, reinforcing sustainability in CNC machining.
Headline
Knowledge
A Complete Guide to Selecting the Ideal Paper Cups for Hot Beverages
This guide provides a detailed overview of how to choose the best paper cups for hot beverages. It explores the different types of cups—single-wall, double-wall, insulated, and eco-friendly—and explains their unique features and ideal use cases. Key factors to consider include beverage temperature, insulation needs, cup size and lid compatibility, environmental impact, and safety standards. The article also outlines best practices for both consumers and businesses to ensure safe use and responsible disposal. Ultimately, selecting the right paper cup depends on balancing functionality, comfort, sustainability, and cost.
Headline
Knowledge
Understanding the Difference Between Reverse Osmosis and Traditional Water Filters
An in-depth comparison between reverse osmosis (RO) and traditional water filters, two widely used methods for purifying drinking water. It outlines how RO uses a semi-permeable membrane to remove dissolved salts, heavy metals, and microorganisms, making it ideal for areas with highly contaminated water. In contrast, traditional filters rely on physical and chemical filtration - often using activated carbon - to improve taste and remove larger particles. While RO systems offer superior contaminant removal, they come with higher costs and water usage. Traditional filters are more affordable and environmentally friendly but less effective against microscopic impurities. The article concludes that the best choice depends on specific water quality needs, and in some cases, combining both systems can offer the most comprehensive solution.
Agree