LIDAR technology indispensable for autonomous vehicles
Knowledge

LIDAR technology indispensable for autonomous vehicles

LIDAR (a combination of light and radar) is an indispensable component of many autonomous vehicles. It measures distance through light and becomes the eyes of autonomous vehicles.
Published: May 24, 2021
LIDAR technology indispensable for autonomous vehicles

What is LiDAR technology?

The working principle of LiDAR

Lidar measures the flight time of light pulses, which can then determine the distance between the sensor and the object. Imagine starting the stopwatch when a light pulse is emitted, and then stopping the timer when the light pulse (reflected from the first object encountered) returns; by measuring the "time of flight" of the laser and knowing the speed of the pulse, you can calculate the distance. Light travels at a speed of 300,000 kilometers per second, so very high-precision devices are required to generate distance information.

Use a laser as a "stick" to measure the distance
To generate a complete point cloud, the sensor must be able to sample the entire environment very quickly. LiDAR uses a very high sampling rate on a single transmitter/receiver, and each transmitter emits tens or hundreds of thousands of laser pulses per second. This means that as many as 100,000 laser pulses complete the round trip from the transmitter on the laser unit to the object to be measured within 1 second, and return to the receiver located near the transmitter on the lidar. Larger systems have up to 64 such transmitters/receivers (it is called a line). Multi-line enables the system to generate more than one million data points per second.
However, 64 fixed lines are not enough to map the entire environment-it just gives a very clear resolution in a very concentrated area. Due to the precision required in optics, it is very expensive to make more wires, so if the number of wires exceeds 64, continuing to increase the number of wires will increase the cost more rapidly. In contrast, many LiDAR systems use rotating components or rotating mirrors to scan the line 360 degrees around the environment.

Common strategies include deflecting individual transmitters and receivers up or down to increase the laser's field of view. For example, Velodyne's 64-lane LiDAR system has a vertical viewing angle of 26.8 degrees (it has a 360-degree horizontal viewing angle through rotation). This LiDAR can see the top of a 12-meter-high object from 50 meters away.

Corresponding to the different lines of LiDAR, there are different sharpness bands, this is because the data facsimile decreases with distance. Although it is not perfect, higher resolutions can be used for closer objects, because as the distance to the sensor increases, the angle between the transmitters (for example, 2 degrees) will cause the spacing between these dot bands to be bigger.

The problems LiDAR needs to overcome
  1. The material of the reflective surface
    Since LiDAR is based on the measurement of the time required for the laser pulse to return to the sensor, if the laser hits a highly reflective surface, this will cause problems for the measurement. From a microscopic point of view, most materials have rough surfaces and scatter light in all directions; a small part of this scattered light can always return to the sensor and is sufficient to generate distance data. However, if the surface reflectivity is very high, the light will scatter away from the sensor, then the point cloud in this area cannot be detected, and the data will be incomplete.
  2. The environment in the air
    The environment in the air can also affect the LiDAR readings. Heavy fog and heavy rain will weaken the emitted laser pulse and affect LiDAR. To solve these problems, higher-power lasers have been put into use, but it is not a good solution for smaller, mobile, or power-sensitive application scenarios.
  3. Data update rate during rotation
    Another challenge facing the LiDAR system is the relatively slow update rate when rotating. The update rate of the system is limited by the rotation speed of the complex optics. The fastest rotation rate of the LiDAR system is about 10Hz, which limits the data update rate.
    When the sensor rotates, a car traveling at 60 mph travels 8.8 feet in 1/10 second, so the sensor can be said to be incapable of changes that occur within 8.8 feet while the car is passing. Recognizable. More importantly, the coverage of LiDAR (under perfect conditions) is 100-120 meters, which is equivalent to less than 4.5 seconds of driving time for a car traveling at 60 mph.
  4. Cost
    Perhaps for LiDAR, the high cost of the installation is the biggest challenge it needs to overcome. Although the cost of this technology has been greatly reduced since its application, the cost is still an important obstacle.

LiDAR technology applied to the automotive industry

From the vehicle's automatic navigation to LiDAR

The operation method of LiDAR is very straightforward. The principle is the same as that of radar. The difference is that LiDAR uses light waves (infrared), while radar uses electromagnetic waves. Both emit a sequence of pulsed light waves or electromagnetic waves. When the waves travel forward, they will reflect when they encounter objects. When the reflected wave pulse is received and the time of flight is calculated, the distance between each other can be measured. This process is very straightforward mathematical calculations and does not involve algorithms and artificial intelligence. Because the light wave has a short wavelength, it can have accurate resolution and measurement results for the object in front. However, the long wavelength of the radar makes it difficult to distinguish whether the object in front is a pedestrian or a telegraph pole.

LiDAR has been used in other fields before it is applied to automatic navigation. For example, in the field of archaeology, researchers used LiDAR and aerial cameras to discover larger ancient city ruins in Angkor Wat in Cambodia. In addition, LiDAR is also applied to wind turbines to measure the speed and direction of the wind to adjust the best windward angle.

The obstacle to the widespread promotion of LiDAR technology is its high price. LiDAR technology mainly uses a long series of high-power semiconductor lasers and performs a 360-degree rotating scan to obtain a full range of 3D images. Because the optical system requires mechanical rotation, it is expensive. Recently, to popularize and reduce costs, Lidar has gradually abandoned 360 degrees in its design and replaced it with less than 180 degrees and a shorter detection range, so that surface-emitting lasers (VCSEL) and digital light processors (DLP)can be used. The use of diffractive optical surfaces to generate an array of laser light will make the cost structure more competitive.

In the future, when automatic navigation becomes more and more common, if LiDAR’s infrared laser signals are everywhere, it will also cause concerns about health and safety. Therefore, LiDAR sensing needs to reduce the intensity of the laser light. In other words, if it is necessary to reduce the intensity of the laser light, a high-sensitivity photodetector will need to be installed.

The general light sensor operates in the small dark current region of the reverse bias voltage of the element. Once a light signal enters, the current will be enhanced, but any of at least tens of thousands of photons can generate a significant photocurrent. The single-photon light sensor deliberately detects and operates the component in the collapse zone of the reverse bias voltage. If a single photon enters, it will cause a substantial collapse, but it can be restored immediately after the collapse. So, if you count the number of crashes of the component, you know how many photons have been collected, so the sensitivity of detection can be increased by several orders of magnitude.

With the invention of new science and technology, it is often not clear at the beginning what the scenarios will be of its appropriate application. Likewise, a single-photon light sensor may be looked at as a "solution looking for a problem," but as the need for more sensitive detection increases, single-photon light sensors will come forward. In the future, self-driving cars will achieve level 5 fully autonomous driving. Whether it is a stereo camera lens, LiDAR, radar, or ultrasonic, car manufacturers must have the ability to integrate these different detection systems, because no single detection system will have a complete solution. Integrated measurement systems can provide complete data in varying weather, distance, and accuracy conditions.

Published by May 24, 2021 Source :techbang, Source :digitimes

Further reading

You might also be interested in ...

Headline
Knowledge
Essential for Precision Machining: A Complete Guide to Tungsten Carbide Center Drills
In modern manufacturing, precision is the core standard by which product quality and performance are measured. From aerospace components to medical devices, even a minor deviation can lead to serious consequences. When it comes to precision drilling, a critical challenge is ensuring that a drill bit can be accurately positioned at the start of a cut while maintaining stability during high-intensity operations. The tungsten carbide center drill is the professional tool engineered specifically to solve this problem.
Headline
Knowledge
From Cavitation Effect to Industrial Applications: The Secrets of Ultrasonic Cleaning
When your glasses, tableware, or electronic components are stained with stubborn dirt, what can you do? Traditional methods often require vigorous scrubbing or even harsh chemical solvents, which are not environmentally friendly and may scratch the item. At this moment, ultrasonic cleaning acts like an “invisible little helper”, reaching deep into grooves and gaps to gently yet effectively remove contaminants.
Headline
Knowledge
The “Spark Magician” of Metalworking
Electrical Discharge Machining (EDM) is a non-traditional machining process that removes metal through electrical sparks. Unlike conventional methods, it is not limited by material hardness and can precisely create deep cavities, micro-holes, and complex structures in hardened steel, tungsten carbide, or superalloys. The three main types of EDM include wire cutting, die-sinking, and hole drilling, which are widely applied in mold making, aerospace, automotive, and medical industries. Although EDM has a slower processing speed, works only with conductive materials, and requires consideration of electrode wear and surface treatment, its advantages in high precision, zero cutting force, and superior surface finish make it an indispensable technology in precision manufacturing. Moreover, it continues to evolve in line with the trend toward smart manufacturing.
Headline
Knowledge
Press Brake vs Shearing Machine: Functional and Technical Comparison of Industrial Processing Equipment
Press Brake and Shearing Machine are two essential types of equipment in the field of machine tools, widely used in the processing of metal, wood, and other materials. They play critical roles in manufacturing, enabling efficient and precise material forming and cutting. This article introduces the definitions, functions, technical features, and applications of folding and cutting machines, offering neutral and practical knowledge sharing.
Headline
Knowledge
Master Chuck Types & Selection: The Essential Guide for Machinists
In the world of precision manufacturing, every minute detail can determine the quality of the final product. The chuck is a critical yet often overlooked component—it's not just a tool for holding a workpiece, but the very heart of ensuring machining accuracy, efficiency, and safety. This article will take you on a deep dive into the diverse universe of chucks, covering their operating principles, design philosophies, common types, and how to select the right jaws and chucks for different needs. Whether you're new to the industry or a seasoned engineer, this guide will unlock the intricate secrets of chucks, helping you master every detail on your path to manufacturing success.
Headline
Knowledge
An Overview of Electrical Discharge Machining (EDM)
Electrical Discharge Machining (EDM) is a non-traditional manufacturing process that utilizes electrical sparks to remove material from a workpiece. Unlike conventional machining methods such as milling or turning, which rely on physical contact between a tool and the material, EDM operates without direct contact, making it ideal for processing hard or brittle materials that are difficult to machine otherwise. The process involves generating a series of rapid electrical discharges between an electrode and the workpiece, submerged in a dielectric fluid, which erodes the material through thermal energy. This technique has revolutionized precision manufacturing by enabling the creation of complex geometries with high accuracy.
Headline
Knowledge
Applications of Machine Tools in the Aerospace Industry
The aerospace industry is a highly specialized and technology-driven sector, encompassing the design, manufacturing, and maintenance of aircraft, spacecraft, satellites, and related equipment. Machine tools play a critical role in this field, enabling the precision machining of complex metal and composite material components. These tools enhance production efficiency while ensuring the accuracy and reliability required to meet the stringent safety and performance standards of aerospace. This document outlines the key applications, technologies, benefits, and future trends of machine tools in the aerospace industry.
Headline
Knowledge
Smart Healthcare Uncovered:How AI Is Transforming Clinical Practice?
With the rapid rise of artificial intelligence (AI), the healthcare industry is undergoing a disruptive transformation. AI is significantly improving diagnostic accuracy and treatment efficiency while profoundly redefining healthcare professionals’ roles and patient experiences. A comprehensive understanding of the core technologies and clinical applications behind this transformation is essential for grasping the future trends and strategic directions of smart healthcare.
Headline
Knowledge
Principle and Applications of Laser Cutting Machines
As the global manufacturing industry advances toward higher precision and efficiency, laser cutting technology has become a key enabler of industrial upgrading. Compared with traditional shearing, stamping, and mechanical cutting, laser cutting offers non-contact processing, higher accuracy, and greater flexibility. It significantly improves productivity while reducing secondary finishing. Today, it is widely adopted in metalworking and increasingly applied in electronics, aerospace, medical, and architectural design industries.
Headline
Knowledge
Why Are High-Quality Cutting Fluids Critical for Machining Quality?
In CNC and metalworking, cutting fluid is no longer just a coolant—it plays a critical role by providing lubrication, chip removal, and corrosion protection. With the right formulation and concentration, it can reduce cutting heat, minimize friction, extend tool life, and maintain workpiece accuracy. High-pressure cooling further enhances efficiency in deep-hole and high-speed machining. The pairing of tool material with the proper cutting fluid is equally crucial; correct selection and maintenance ensure process stability, prolong equipment life, and improve the overall work environment. Cutting fluid has become an indispensable investment in modern precision manufacturing.
Headline
Knowledge
Introduction to Emerging Printing Technologies: Opening New Horizons for the Future of Printing
With rapid technological progress and increasingly diverse market demands, traditional printing techniques are no longer sufficient to meet modern industry’s requirements for precision, efficiency, and sustainability. As a result, emerging technologies such as UV printing, 3D printing, and Nanoimprint Lithography (NIL) have risen to prominence, offering solutions with higher precision, broader applications, and lower production costs. These innovations have already demonstrated value across packaging, advertising, healthcare, semiconductors, and construction. In the following sections, we will explore their technical features and real-world applications, highlighting the advantages and future potential of these cutting-edge printing technologies.
Headline
Knowledge
The Core Standard for Life-Critical Systems: A Complete Guide to IPC Classification
In high-risk fields such as medical, aerospace, and automotive, IPC classifications determine PCB reliability and safety. Class 3 represents the highest standard, requiring zero tolerance for defects, complete via filling, adequate copper annular rings, and rigorous inspections to ensure operation under extreme conditions, while Class 2 suits long-term use in non-critical equipment with minor cosmetic flaws allowed. Class 3’s strict criteria cover component placement, soldering, plating thickness, and environmental testing—adding cost and production time, but far outweighing the risks of failure in life- or safety-critical systems. Thus, defining high-risk equipment as Class 3 during design is essential, making IPC classification a core safeguard rather than an option.
Agree