The Difference Between Diamond Tools and Tungsten Steel Tools
Knowledge

The Difference Between Diamond Tools and Tungsten Steel Tools

The advanced processing device and the high-efficiency CNC tool can give full play to its effect and obtain good economic benefits. Because the tool is subjected to high pressure, high temperature, friction, shock and vibration when cutting. Material is an important factor affecting the cutting ability of a tool, and also has a considerable impact on processing efficiency, processing quality, processing cost and tool durability.
Published: Jul 12, 2022
The Difference Between Diamond Tools and Tungsten Steel Tools

The Tool Material Should Have Basic Performance

With the rapid development of tool materials, the physical, mechanical and cutting performance of various new tool materials have been greatly improved, and the scope of application has been continuously expanded. The choice of tool material has a great influence on tool life, machining efficiency, machining quality and machining cost. Cutting tools are subject to high pressure, high temperature, friction, shock and vibration. Therefore, the tool material should have the following basic performance:

For hardness and wear resistance, the hardness of the tool material must be higher than that of the workpiece material, generally above 60HRC. The higher the hardness of the tool material, the better the wear resistance.

Strength and toughness, the tool material should have high strength and toughness to withstand cutting force, impact and vibration, and prevent brittle fracture and chipping of the tool.

Heat resistance, the heat resistance of the tool material is better, it can withstand high cutting temperatures, and has good oxidation resistance.

In terms of process efficiency and economy, the tool material should have good forging efficiency, heat treatment efficiency, welding efficiency, grinding efficiency, etc., and a high performance-price ratio should be pursued.

Introduction to Diamond Tools and High-Speed Steel Cutting (Tungsten Steel) Tools

Diamond Tool
Diamond is an allotrope of carbon, the hardest material that has been found in nature. Diamond tools have high hardness, high wear resistance and high thermal conductivity, and are widely used in the processing of non-ferrous and non-metallic materials. Especially in the high-speed cutting of aluminum and silicon-aluminum alloys, diamond tools are the main cutting tool varieties that are difficult to replace. Diamond tools that can achieve high efficiency, high stability and long life are an indispensable tool in modern CNC machining.

Types of Diamond Tools
Natural diamond tool:
Natural diamond has been used as a cutting tool for hundreds of years. After fine grinding, the natural single crystal diamond tool can be sharpened very sharply. The workpiece accuracy and extremely low surface roughness are recognized, ideal and irreplaceable ultra-precision machining tools.

PCD diamond tools:
Natural diamond is expensive, and polycrystalline diamond (PCD) is widely used in cutting. Since the early 1970s, polycrystalline diamond (Polycrystauine Diamond) prepared by high-temperature and high-pressure synthesis technology, referred to as PCD blades, has been successfully developed. In many cases, natural diamond tools have been replaced by synthetic polycrystalline diamond. PCD is rich in raw materials, and its price is only one tenth of that of natural diamond.

PCD tools cannot grind extremely sharp edges, and the surface quality of the processed workpieces is not as good as that of natural diamonds. At present, PCD inserts with chip breakers cannot be easily manufactured in the industry. Therefore, PCD can only be used for fine cutting of non-ferrous metals and non-metals, and it is difficult to achieve ultra-precision mirror cutting.

CVD diamond tools:
CVD diamond technology has been around in Japan since the late 1970s and early 1980s. CVD diamond refers to the synthesis of a diamond film on a heterogeneous substrate (such as cemented carbide, ceramics, etc.) by chemical vapor deposition (CVD). CVD diamond has the exact same structure and characteristics as natural diamond.

The performance of CVD diamond is very close to that of natural diamond. It has the advantages of natural single crystal diamond and polycrystalline diamond (PCD), and overcomes their shortcomings to a certain extent.

Characteristics of Diamond Tools
Extremely high hardness and wear resistance:
Natural diamond is the hardest substance that has been found in nature. Diamond has extremely high wear resistance. When machining high-hardness materials, the life of diamond tools is 10 to 100 times that of cemented carbide tools, or even hundreds of times.

A very low coefficient of friction:
The friction coefficient between diamond and some non-ferrous metals is lower than other tools, the friction coefficient is low, the deformation during processing is small, and the cutting force can be reduced.

Very sharp cutting edge:
The cutting edge of the diamond tool can be very sharp, and the natural single crystal diamond tool can be as high as 0.002 ~ 0.008μm, which can perform ultra-thin cutting and ultra-precision machining.

High thermal conductivity:
The thermal conductivity and thermal diffusivity of diamond are high, the cutting heat is easily dissipated, and the temperature of the cutting part of the tool is low.

A low thermal expansion coefficient:
The thermal expansion coefficient of diamond is several times smaller than that of cemented carbide, and the change in tool size caused by cutting heat is very small, which is especially important for precision and ultra-precision machining that require high dimensional accuracy.

Application of Diamond Tools
Diamond tools are mostly used for fine cutting and boring of non-ferrous and non-metallic materials at high speed. It is suitable for processing various wear-resistant non-metals, such as glass fiber reinforced plastic powder metallurgy blanks, ceramic materials, etc.; various wear-resistant non-ferrous metals, such as various silicon aluminum alloys; various non-ferrous metals finishing.

The disadvantage of diamond tools is that the thermal stability is poor. When the cutting temperature exceeds 700 ° C ~ 800 ° C, it will completely lose its hardness; in addition, it is not suitable for cutting ferrous metals, because diamond (carbon) easily interacts with iron atoms at high temperatures. The carbon atoms are converted into a graphite structure, and the tool is easily damaged.

High-Speed Steel Cutting Tools
High Speed Steel (HSS for short) is a high alloy tool steel with more alloying elements such as W, Mo, Cr, and V added. High-speed steel tools have excellent comprehensive performance in terms of strength, toughness and manufacturability. In complex tools, especially for hole-making tools, milling cutters, threading tools, broaches, gear cutting tools and other complex cutting tools, high-speed steel still plays an important role. High-speed steel tools are easy to sharpen cutting edges.

According to different uses, high-speed steel can be divided into general-purpose high-speed steel and high-efficiency high-speed steel.

Universal High Speed Steel Tool
General-purpose high speed steel. Generally, it can be divided into two types: tungsten steel and tungsten-molybdenum steel. This type of high-speed steel contains 0.7% to 0.9% (C). According to the content of tungsten in steel, it can be divided into tungsten steel with W content of 12% or 18%, tungsten-molybdenum steel with W content of 6% or 8%, and molybdenum steel with W content of 2% or without W. General-purpose high-speed steel has certain hardness (63-66HRC) and wear resistance, high strength and toughness, good plasticity and processability, so it is widely used in the manufacture of various complex tools.

Tungsten steel:
The typical grade of general-purpose high-speed steel tungsten steel is W18Cr4V, (W18 for short), which has good comprehensive performance. The high temperature hardness at 6000C is 48.5HRC, which can be used to manufacture various complex tools. It has the advantages of good grindability and low decarburization sensitivity, but due to the high carbide content, the distribution is less uniform, the particles are large, and the strength and toughness are not high.

Tungsten molybdenum steel:
It refers to a high-speed steel obtained by replacing part of tungsten in tungsten steel with molybdenum. The typical grade of tungsten-molybdenum steel is W6Mo5Cr4V2 (referred to as M2). The carbide particles of M2 are fine and uniform, and the strength, toughness and high temperature plasticity are better than those of W18Cr4V. Another tungsten-molybdenum steel is W9Mo3Cr4V (W9 for short), its thermal stability is slightly higher than that of M2 steel, its bending strength and toughness are better than W6M05Cr4V2, and it has good machinability.

High-Efficiency High-Speed Steel Tool
High-efficiency high-speed steel refers to a new type of steel that adds some carbon content, vanadium content and new alloying elements such as Co and Al to the composition of general-purpose high-speed steel, thereby improving its heat resistance and wear resistance. There are mainly the following categories:

High carbon high speed steel:
High-carbon high-speed steel (such as 95W18Cr4V), with high hardness at room temperature and high temperature, suitable for manufacturing and processing ordinary steel and cast iron, drills, reamers, taps and milling cutters with high wear resistance requirements, or tools for processing harder materials, should not withstand large shocks.

High vanadium high speed steel:
Typical grades, such as W12Cr4V4Mo, (EV4 for short), with V content increased to 3% to 5%, good wear resistance, suitable for cutting materials with great tool wear, such as fibers, hard rubber, plastics, etc. It can also be used to process stainless steel, high-strength steel and high-temperature alloys and other materials.

Cobalt high speed steel:
It is a cobalt-containing super-hard high-speed steel. Typical grades, such as W2Mo9Cr4VCo8 (M42 for short), have high hardness, and its hardness can reach 69-70HRC. It is suitable for processing high-strength heat-resistant steels, high-temperature alloys, titanium alloys, etc. Material, M42 has good grindability and is suitable for making sophisticated and complex tools, but it is not suitable for working under impact cutting conditions.

Aluminum high speed steel:
It is a super-hard high-speed steel containing aluminum. Typical grades, such as W6Mo5Cr4V2Al, (501 for short), the high temperature hardness at 6000C also reaches 54HRC, and the cutting efficiency is equivalent to M42. It is suitable for manufacturing milling cutters, drills, reamers, gear cutters, broaches etc., for processing alloy steel, stainless steel, high-strength steel and superalloy and other materials.

Nitrogen superhard high speed steel:
Typical grades, such as W12M03Cr4V3N, referred to as (V3N), are nitrogen-containing super-hard high-speed steels, with hardness, strength, and toughness equivalent to M42. They can be used as substitutes for cobalt-containing high-speed steels for low-speed cutting of difficult-to-machine materials and low-speed high-precision machining.

The material of the cutting tool varies according to the type of tool, the material of the workpiece, the capability and mechanical properties of the machine tool, and the cutting form. It is very important to understand the difference and how to choose a material suitable for your tools!

Published by Jul 12, 2022 Source :gushiciku

Further reading

You might also be interested in ...

Headline
Knowledge
Medical Consumables: Global Guardians of Health
Medical consumables are a wide range of products used by healthcare professionals on a daily basis, typically for a single use before being disposed of. Their primary purpose is to ensure patient care, maintain hygiene, and prevent the spread of infection. These items are crucial for everything from routine checkups to complex surgical procedures.
Headline
Knowledge
Closed Suction System: Revolutionizing Respiratory Care
In critical care, airway management is a vital part of sustaining a patient's life. When patients rely on ventilators, clearing respiratory secretions becomes a crucial aspect of daily care. This seemingly simple, yet critically important, procedure has undergone significant evolution over the past few decades, progressing from early open suctioning to today's more advanced and safer Closed Suction System (CSS).
Headline
Knowledge
Understanding Plastic Materials: A Professional Analysis and Application Guide
Plastic materials, due to their diverse properties and wide range of applications, have become indispensable in modern industries and daily life. Choosing the right plastic material for different needs is crucial for optimizing product performance and achieving environmental benefits. The following is a professional review of the characteristics, applications, and pros and cons of the main plastic materials.
Headline
Knowledge
Exploring Rubber Processing Technology: Core and Challenges of Modern Manufacturing
Rubber processing is one of the most critical stages in modern manufacturing. From vehicle tires to industrial equipment seals and various consumer goods, rubber materials are everywhere. As the demand for high-quality and efficient products rises, rubber processing technologies continue to evolve. This article explores the basic knowledge of rubber processing, key technologies, and future trends.
Headline
Knowledge
Understanding the Coffee Robot: A Comprehensive Analysis
This article provides a comprehensive overview of coffee robots—automated machines that brew and serve coffee using advanced robotics and artificial intelligence. It outlines their key features, including AI-driven customization, app connectivity, 24/7 efficiency, and diverse drink options. The report also examines their growing impact on the coffee industry, highlighting benefits for both consumers and businesses such as convenience, consistency, and reduced labor costs. Case studies like CafeXbot, Artly Coffee, and Rozum Café illustrate how coffee robots are reshaping the coffee experience and driving market growth worldwide.
Headline
Knowledge
Understanding PU Foam: Properties, Types, and Industrial Uses
PU foam is no longer merely a cushioning material. It has become a core functional component across sports, medical, fashion, and lifestyle industries. By adjusting density, thickness, and surface feel, PU can meet diverse requirements for breathability, antimicrobial performance, durability, and comfort. It also aligns with brand trends toward eco-friendly formulations and recyclable material solutions.
Headline
Knowledge
Understanding Helical Filters: A Comprehensive Overview
Helical filters are essential components in radio frequency (RF) and microwave engineering, playing a key role in signal filtering and processing. Known for their compact size, high Q-factor, and broad frequency range, these filters are widely used across various industries. This report provides an in-depth look at helical filters, including their structure, operating principles, advantages, limitations, and typical applications.
Headline
Knowledge
Boost Your Device’s Performance: A Guide to Choosing the Right Power Supply
Choosing the right power supply unit (PSU) is crucial for maximizing your device's performance, ensuring stability, and prolonging the lifespan of your components. A PSU is not just a simple component that provides power; it is the heart of your system that ensures each component receives the right amount of power safely and efficiently. This report will guide you through the essential considerations and steps to select the ideal PSU for your needs.
Headline
Knowledge
How to Choose the Ideal Wood Screws for Furniture and Cabinetry
Selecting the right wood screws is essential to building strong, stable, and visually appealing furniture or cabinets. Key factors include screw size, length, thread type, head style, and compatibility with different wood materials. Coarse threads suit softwoods, while fine threads are better for hardwoods. Choosing the proper head type ensures both function and aesthetics, while accounting for environmental changes helps maintain joint integrity. Pre-drilling pilot holes can also prevent splitting, especially in dense wood. By understanding these considerations, woodworkers can achieve durable, high-quality results in their projects.
Headline
Knowledge
How Effective Coolant Management Promotes Sustainable CNC Machining
Sustainable CNC machining increasingly relies on effective coolant management to reduce environmental impact, cut costs, and improve machining performance. Coolants are essential for lubrication, heat control, and chip removal, but improper handling leads to waste and higher expenses. Proper management practices—such as regular monitoring, filtration, recycling, automation, and using eco-friendly coolants—help extend coolant life, maintain machine health, and ensure consistent product quality. Although initial investment may be a barrier, the long-term benefits include cost savings, reduced waste, and enhanced operational efficiency. Future advancements in IoT and AI are expected to further optimize coolant systems, reinforcing sustainability in CNC machining.
Headline
Knowledge
A Complete Guide to Selecting the Ideal Paper Cups for Hot Beverages
This guide provides a detailed overview of how to choose the best paper cups for hot beverages. It explores the different types of cups—single-wall, double-wall, insulated, and eco-friendly—and explains their unique features and ideal use cases. Key factors to consider include beverage temperature, insulation needs, cup size and lid compatibility, environmental impact, and safety standards. The article also outlines best practices for both consumers and businesses to ensure safe use and responsible disposal. Ultimately, selecting the right paper cup depends on balancing functionality, comfort, sustainability, and cost.
Headline
Knowledge
Understanding the Difference Between Reverse Osmosis and Traditional Water Filters
An in-depth comparison between reverse osmosis (RO) and traditional water filters, two widely used methods for purifying drinking water. It outlines how RO uses a semi-permeable membrane to remove dissolved salts, heavy metals, and microorganisms, making it ideal for areas with highly contaminated water. In contrast, traditional filters rely on physical and chemical filtration - often using activated carbon - to improve taste and remove larger particles. While RO systems offer superior contaminant removal, they come with higher costs and water usage. Traditional filters are more affordable and environmentally friendly but less effective against microscopic impurities. The article concludes that the best choice depends on specific water quality needs, and in some cases, combining both systems can offer the most comprehensive solution.
Agree