What are the Components of Automotive Semiconductors?
Knowledge

What are the Components of Automotive Semiconductors?

MCUs (microcontroller units) have a wide range of terminal applications, including home appliance controls, automotive electronics, education and entertainment, medical equipment, etc. Among them, automotive electronics and the Internet of Things are the main driving forces of the MCU industry.
Published: Jan 24, 2022
What are the Components of Automotive Semiconductors?

Consumers in the automotive market desire convenience, safety, and energy-savings. These expectations represent some of the increasing requirements for intelligent and energy-saving automobiles, and are a driving force in the research and development of automotive electronic technology. Major car manufacturers are focusing more on automotive electronics, and the proportion of automotive electronics costs of automobiles has risen from 2 to 3% in the 1980s to now making up to as much as 40 to 50% of the overall cost.

Consumers in the automotive market desire convenience, safety, and energy-savings. These expectations represent some of the increasing requirements for intelligent and energy-saving automobiles, and are a driving force in the research and development of automotive electronic technology. Major car manufacturers are focusing more on automotive electronics, and the proportion of automotive electronics costs of automobiles has risen from 2 to 3% in the 1980s to now making up to as much as 40 to 50% of the overall cost.

Secondly, intelligent safety features can enhance the safety performance of the vehicle. Safety control operations are mainly divided into three processes: data acquisition, data processing, and sending of instructions to the driver.

Entertainment, convenience, and safety features all require that the car be able to detect the environment, analyze the information, and make appropriate, efficient and accurate responses. All processes are completed by automotive electronics throughout systems, of which ECUs, (Electronic Controller Unit) MCUs, and sensors are the most important elements. All these components require semiconductors to function.

Automotive semiconductor key components:

  1. ECU: Electronic Control Unit 
    The first step in understanding automotive electronics is to understand the (ECU). Almost every automotive electronic system has an ECU as its core. An ECU is like an embedded computer which is used to control the major systems of the car. The ECU internal components include a microcontroller (MCU), input and output devices, circuits, AD (analog and digital) conversion circuits, power supply components, in-vehicle communication circuits, etc. As the complexity of the various control systems in the car increases, the number of ECUs in the car also increases. At present, there are hundreds of ECUs on some high-end model cars.
  2. MCU:
    Microcontrollers (MCUs) are most often used in consumer electronics, with the second-largest application being in automotive electronics. The most important task of the MCU in an ECU is to integrate of the central processing unit (CPU), memory, various input/output interfaces, timer/counter (timer/counter) etc. into one IC. The MCU is divided into four grades according to the bandwidth of the internal data bus: 4-bit, 8-bit, 16-bit, and 32-bit. Due to the complexity of application fields, different grades of MCUs are applicable. Simple functional systems, such as car air conditioners, windows, rear mirrors, etc., can use low-cost 8-bit MCUs. Brakes, airbags, and body stability controls that require high computing/processing capabilities use 16-bit MCUs. As automotive electronics moves towards greater intelligence, 32-bit is becoming more mainstream for components such as multimedia and entertainment devices, as well as driving control and other higher-end electronic information operations. 
    Besides being used in automotive electronics, 32-bit MCUs are used in the power system of the car to control the fuel ignition system. By increasing the accuracy of fuel injection and combustion control, fuel efficiency can be improved. 8-bit systems can no longer keep up with the processing speed requirements of fuel systems to meet modern environmental regulations. Hybrid engines and electronic vehicles also have high requirements for voltage control and electric recharge current control. When you step on the accelerator, because the system is controlled by electronics instead of traditional hydraulics, the power feedback requires extremely precise communication between systems to provide sufficient control. In hybrid or battery-powered vehicles, the battery not only powers the engine, but also powers the surrounding sensor subsystems. Interaction and feedback between the subsystems and the main system require the support of high-performance architecture.
  3. Sensor:
    The ECU / MCU of automotive electronics is responsible for data processing operations, and control of the various sensors responsible for collecting data. Driver assistance systems use image sensors, millimeter-wave radars, laser radars, acceleration sensors, angular velocity sensors, wheel speed sensors, tire pressure sensors, etc. These sensors are becoming more and more advanced, necessitating more advanced control systems.
    With the advancement of imaging technology, and the improvement of system integration capabilities of car manufacturers, the information from multiple image sensors distributed inside and outside the vehicle, can make up for the lack of human vision and assist driving and improve safety. For example, single systems such as lane departure warning systems, parking assist systems, blind-spot detection systems, and reversing warning can protect the safety of the driver. By further integrating these systems, a more comprehensive system can be constructed to give a safe and comfortable driving experience. The development of autonomous driving technology is constantly improving.

Ability to adapt to the environment:

In addition to the functional development and processing capabilities of key components that must keep pace with applications, automotive semiconductors must face more challenges in the operating environment than general consumer electronics or even industrial semiconductors. Vehicles must adapt to the climate environment of different countries and take into account long-term mobility and safety. Therefore, in addition to the low environmental requirements of IC components installed inside the body of the vehicle, other automotive electronic components must be designed to operate in harsh environments. Tolerable ambient temperature requirements for general ICs are at most minus 10°C to 70°C, but the requirements for automotive electronics are from minus 40°C to 155°C, with more than 1,000 cycles being required. In addition to moisture resistance, the requirements for high-temperature resistance, shock resistance, and failure rate are much stricter than those of general consumer electronic parts. Coupled with the long service life of the car, operating life and durability are also severely tested, and the supply life of parts must exceed 30 years.

Efficiency, decreased power consumption, and integration are the main technology development trends

At present, the mainstream design of MCUs includes three major trends: high performance, low power consumption, and high integration. In terms of high performance, 32-bit MCUs have become mainstream, especially in recent years. With the accelerated speeds of the Internet of Things, 32-bit MCUs have rapidly become popular. The price difference between 8-bit and 32-bit MCUs has gradually narrowed. Computing speed performance has reached 100MHz and above, and performance has also improved. The cores of 32-bit MCUs are mostly ARM Cortex-M4 to M7, which can support DSP and single-precision floating-point operation instructions. The clock operation frequency can also reach 400MHz, which is quite suitable for the Internet of Things with edge computing design.

Another trend is towards lower power consumption. Although low power consumption has always been a focus of MCU design, in the era of the Internet of Things, this feature will be further strengthened, especially for mobile devices that rely on battery power, where low power consumption is essential.

The first step in the operation of the IoT architecture is to gather the signals transmitted by a large number of low-level devices. These low-level devices are often scattered over a wide areas where power cable connection is not possible. Due to their large numbers, it is impossible to continually replace batteries, so low-power design is inevitable. For these types of applications, most manufacturers have proposed ultra-low-power MCU products, so that each product devise and its sensing node can maintain long-term operation.

Due to the diverse functions of the Internet of Things, to achieve high-integration, a single device must integrate as much hardware and software as possible. In addition to improving the performance of systems, manufacturers must continually reduce total material costs to remain competitive. At present, MCUs are integrating common technologies including the I/O interface, UART, USB, Ethernet, etc. 

In the past, encryption and decryption were mainly calculated using software, but this process lengthens the response time of the system and increase the power required for computing. Existing manufacturers now design the hardware to perform this function. This not only speeds up the computing process and reduces power consumption, but also improves security, making it more difficult to crack the encryption. 

As good communication is one of the most important requirements in IoT systems, advancements in wireless technology are also being developed. In the past, the MCU was used in conjunction with a wireless communication module. Recently, manufacturers have launched system-on-chip (SoC) which integrates the two. This important product strategy will help manufacturers increase user acceptance of the Internet of Things. With the gradual expansion of the market, more and more product types with improved functions will be developed. 

The Internet of Things is undoubtedly the most important growth driver for MCU development. This trend not only drives market growth but also forces MCU technology to continually make breakthroughs. Combining high performance, low power consumption, and high integration will be the most important design focus of MCUs.

Taiwan's auto industry has long been biased towards back-end manufacturing and assembly, and there has been little in-depth discussion on front-end system design. However, with some auto industries becoming fully autonomous, vehicle intelligence has become a focus of development. Taiwanese companies are investing far more than before in system integration systems, from front-end chips to back-end software, and are developing automotive technologies to meet future trends. With the acceleration of the demand for intelligent systems, the demand for MCUs will continue to rise in the future.

Published by Jan 24, 2022 Source :digitimes, Source :stockfeel

Further reading

You might also be interested in ...

Headline
Knowledge
Medical Consumables: Global Guardians of Health
Medical consumables are a wide range of products used by healthcare professionals on a daily basis, typically for a single use before being disposed of. Their primary purpose is to ensure patient care, maintain hygiene, and prevent the spread of infection. These items are crucial for everything from routine checkups to complex surgical procedures.
Headline
Knowledge
Closed Suction System: Revolutionizing Respiratory Care
In critical care, airway management is a vital part of sustaining a patient's life. When patients rely on ventilators, clearing respiratory secretions becomes a crucial aspect of daily care. This seemingly simple, yet critically important, procedure has undergone significant evolution over the past few decades, progressing from early open suctioning to today's more advanced and safer Closed Suction System (CSS).
Headline
Knowledge
Understanding Plastic Materials: A Professional Analysis and Application Guide
Plastic materials, due to their diverse properties and wide range of applications, have become indispensable in modern industries and daily life. Choosing the right plastic material for different needs is crucial for optimizing product performance and achieving environmental benefits. The following is a professional review of the characteristics, applications, and pros and cons of the main plastic materials.
Headline
Knowledge
Exploring Rubber Processing Technology: Core and Challenges of Modern Manufacturing
Rubber processing is one of the most critical stages in modern manufacturing. From vehicle tires to industrial equipment seals and various consumer goods, rubber materials are everywhere. As the demand for high-quality and efficient products rises, rubber processing technologies continue to evolve. This article explores the basic knowledge of rubber processing, key technologies, and future trends.
Headline
Knowledge
Understanding the Coffee Robot: A Comprehensive Analysis
This article provides a comprehensive overview of coffee robots—automated machines that brew and serve coffee using advanced robotics and artificial intelligence. It outlines their key features, including AI-driven customization, app connectivity, 24/7 efficiency, and diverse drink options. The report also examines their growing impact on the coffee industry, highlighting benefits for both consumers and businesses such as convenience, consistency, and reduced labor costs. Case studies like CafeXbot, Artly Coffee, and Rozum Café illustrate how coffee robots are reshaping the coffee experience and driving market growth worldwide.
Headline
Knowledge
Understanding PU Foam: Properties, Types, and Industrial Uses
PU foam is no longer merely a cushioning material. It has become a core functional component across sports, medical, fashion, and lifestyle industries. By adjusting density, thickness, and surface feel, PU can meet diverse requirements for breathability, antimicrobial performance, durability, and comfort. It also aligns with brand trends toward eco-friendly formulations and recyclable material solutions.
Headline
Knowledge
Understanding Helical Filters: A Comprehensive Overview
Helical filters are essential components in radio frequency (RF) and microwave engineering, playing a key role in signal filtering and processing. Known for their compact size, high Q-factor, and broad frequency range, these filters are widely used across various industries. This report provides an in-depth look at helical filters, including their structure, operating principles, advantages, limitations, and typical applications.
Headline
Knowledge
Boost Your Device’s Performance: A Guide to Choosing the Right Power Supply
Choosing the right power supply unit (PSU) is crucial for maximizing your device's performance, ensuring stability, and prolonging the lifespan of your components. A PSU is not just a simple component that provides power; it is the heart of your system that ensures each component receives the right amount of power safely and efficiently. This report will guide you through the essential considerations and steps to select the ideal PSU for your needs.
Headline
Knowledge
How to Choose the Ideal Wood Screws for Furniture and Cabinetry
Selecting the right wood screws is essential to building strong, stable, and visually appealing furniture or cabinets. Key factors include screw size, length, thread type, head style, and compatibility with different wood materials. Coarse threads suit softwoods, while fine threads are better for hardwoods. Choosing the proper head type ensures both function and aesthetics, while accounting for environmental changes helps maintain joint integrity. Pre-drilling pilot holes can also prevent splitting, especially in dense wood. By understanding these considerations, woodworkers can achieve durable, high-quality results in their projects.
Headline
Knowledge
How Effective Coolant Management Promotes Sustainable CNC Machining
Sustainable CNC machining increasingly relies on effective coolant management to reduce environmental impact, cut costs, and improve machining performance. Coolants are essential for lubrication, heat control, and chip removal, but improper handling leads to waste and higher expenses. Proper management practices—such as regular monitoring, filtration, recycling, automation, and using eco-friendly coolants—help extend coolant life, maintain machine health, and ensure consistent product quality. Although initial investment may be a barrier, the long-term benefits include cost savings, reduced waste, and enhanced operational efficiency. Future advancements in IoT and AI are expected to further optimize coolant systems, reinforcing sustainability in CNC machining.
Headline
Knowledge
A Complete Guide to Selecting the Ideal Paper Cups for Hot Beverages
This guide provides a detailed overview of how to choose the best paper cups for hot beverages. It explores the different types of cups—single-wall, double-wall, insulated, and eco-friendly—and explains their unique features and ideal use cases. Key factors to consider include beverage temperature, insulation needs, cup size and lid compatibility, environmental impact, and safety standards. The article also outlines best practices for both consumers and businesses to ensure safe use and responsible disposal. Ultimately, selecting the right paper cup depends on balancing functionality, comfort, sustainability, and cost.
Headline
Knowledge
Understanding the Difference Between Reverse Osmosis and Traditional Water Filters
An in-depth comparison between reverse osmosis (RO) and traditional water filters, two widely used methods for purifying drinking water. It outlines how RO uses a semi-permeable membrane to remove dissolved salts, heavy metals, and microorganisms, making it ideal for areas with highly contaminated water. In contrast, traditional filters rely on physical and chemical filtration - often using activated carbon - to improve taste and remove larger particles. While RO systems offer superior contaminant removal, they come with higher costs and water usage. Traditional filters are more affordable and environmentally friendly but less effective against microscopic impurities. The article concludes that the best choice depends on specific water quality needs, and in some cases, combining both systems can offer the most comprehensive solution.
Agree