What Is Topology Optimization?
Knowledge

What Is Topology Optimization?

Under the influence of the China-US trade war and COVID-19, the border management of various countries is still very strict, and global economic and trade activities have not been thawed, which has caused the price of some raw materials to rise. Therefore, if machine tools can be designed with a lightweight structure, it will reduce manufacturing costs and increase profits. Lightweight moving castings can also improve the dynamic characteristics, which will be of considerable help to high-speed or high-precision machine control.
Published: Jul 09, 2021
What Is Topology Optimization?

What Is Topology Optimization?

Topology optimization is a mathematical method that can optimize the material layout in each design space for a set of given loads, boundary conditions, and constraints, and let the design meet the given conditions (loads, boundary conditions, constraints) for the optimized performances. The difference between topology optimization and shape optimization or size optimization is that the design can obtain any shape in the design space. Usually, topological optimization will use the finite element method to evaluate the design performance.

Machine tool terminal applications can be roughly divided into rough machining processes with high removal volume and finishing processes requiring precision and surface finishing. The essence of the machine is an electro-mechanical, integrated system, including machine structure and servo drive control modules. Therefore, to simulate the dynamic characteristics of the machine by CAE analysis technology, it is necessary to integrate the machine structure and the servo drive control module, to construct a complete electro-mechanical, integrated multi-body dynamic, digital model. The correctness of each subsystem model is guaranteed. It will affect the results of the dynamic simulation analysis of the whole machine.

In recent years, although the machine tool industry has gradually introduced CAE computer simulation analysis technology for machine development, most of these technologies are still based on static rigidity analysis and modal analysis. The analysis results are not yet sufficient to directly match the cutting efficiency and cutting accuracy that machining users want. The cutting accuracy or machine development processing efficiency often does not meet the customer's expectations, or the mold surface processing lines are abnormal. At the initial stage of development, the machine and equipment will have application conditions linked to the design process. The clearer the requirements and more precise the design, the quicker topology optimization technology can be integrated to modify the structure.

Topology optimization design technology of electro-mechanical integrated structure

With structural topology optimization technology, combined with electro-mechanical integration technology, if the rigidity of the casting is defined as the topological optimization target, and the dynamic error demand is used to reverse the moving casting weight as the topological optimization constraint, the tool that best meets the design target requirements can be automatically solved. The machine structure design can not only meet the light weight requirements, but also eliminate the need for multiple modifications in the casting design. Final precision cutting requirements can be met and high-efficiency structural optimization can be achieved, effectively reducing the influence of human subjective factors, and greatly improving the design development efficiency.

At present, most structural topology optimization technologies are aimed at static rigidity or modal frequency. More advanced methods can also be used to optimize the structure of the frequency response function FRF amplitude, but this optimization result is only required for a high cutting removal rate. The terminal application can predict the cutting depth under the processing requirements. There is no clear index for the finishing surface texture requirements. This often results in abnormalities in the mold surface processing lines after the machine development is completed. The dynamic error performance of the machine is comparable to the precision of the machine, which will be reflected in the quality of the processed surface texture. The integration of structural topology optimization technology with electro-mechanical simulation technology enables the construction of electro-mechanical, structure topology optimization. The user defines the dynamic error required under empty running machine acceleration. The mathematical relationship between the weight of the moving casting and the dynamic error can be deduced as the topology optimization. The optimization of this structure is directly related to the end cutting accuracy, which can greatly improve the development efficiency.

The machine tool can be set to different configurations to meet different industrial application scenarios. The frequency response function FRF is a very important quantitative indicator of the machine. For the rough machining process, processing efficiency is the main consideration. The frequency response function FRF can be integrated into the calculation model of the cutting chatter steady-state graph to evaluate the cutting efficiency. For the finishing process, the machining accuracy is the main consideration, and the dynamic error performance of the machine is related to the quality of the finishing surface texture. If the dynamic error of the empty running track of the machine structure can be effectively reduced in the design, the machining accuracy will be better in the real machine fine cutting.

Mechanical and electrical integration analysis technology can effectively predict the dynamic error of the machine, and the dynamic error performance of the machine is related to the inertia (mass) of the moving casting of each axis. The user defines the dynamic error of machine acceleration during empty running, and the weight of the moving casting can be determined. The dynamic error is used as the limiting condition of topology optimization, and the optimization result of this structure is directly related to the final cutting accuracy.

Topology optimization design technology SOP and benefits of electro-mechanical integrated structure

The standard operating process of the mechanical and electrical integration structure topology optimization design technology: The user defines the dynamic error of the required machine under empty running acceleration. The special module of the mechanical and electrical integration of the machine tool and can reverse the mathematical relationship between the dynamic error of the moving casting and the weight curve. Using the aforementioned relational expression as the limiting condition of topology optimization, the optimization result of this structure can directly meet the designer's dynamic error requirements. Compared with traditional topology optimization technology, it is not necessary to integrate the mechanical and electrical integration technology to determine the dynamic error performance at the initial design stage. By modifying the casting design at the development end, you can confirm whether the path error generated after the machine and the servo control match the customer's accuracy requirements. The electronically controlled machine processes are also in the development stage. With the integration of different servo control parameters and structures, you can quickly integrate mechanisms, electric controls, and processes into the initial stage of machine development to improve machine tools development efficiency. The overall change of design technology will lead to a qualitatively changed, high-quality machine tool design process.

Published by Jul 09, 2021 Source :maonline

Further reading

You might also be interested in ...

Headline
Knowledge
Medical Consumables: Global Guardians of Health
Medical consumables are a wide range of products used by healthcare professionals on a daily basis, typically for a single use before being disposed of. Their primary purpose is to ensure patient care, maintain hygiene, and prevent the spread of infection. These items are crucial for everything from routine checkups to complex surgical procedures.
Headline
Knowledge
Closed Suction System: Revolutionizing Respiratory Care
In critical care, airway management is a vital part of sustaining a patient's life. When patients rely on ventilators, clearing respiratory secretions becomes a crucial aspect of daily care. This seemingly simple, yet critically important, procedure has undergone significant evolution over the past few decades, progressing from early open suctioning to today's more advanced and safer Closed Suction System (CSS).
Headline
Knowledge
Understanding Plastic Materials: A Professional Analysis and Application Guide
Plastic materials, due to their diverse properties and wide range of applications, have become indispensable in modern industries and daily life. Choosing the right plastic material for different needs is crucial for optimizing product performance and achieving environmental benefits. The following is a professional review of the characteristics, applications, and pros and cons of the main plastic materials.
Headline
Knowledge
Exploring Rubber Processing Technology: Core and Challenges of Modern Manufacturing
Rubber processing is one of the most critical stages in modern manufacturing. From vehicle tires to industrial equipment seals and various consumer goods, rubber materials are everywhere. As the demand for high-quality and efficient products rises, rubber processing technologies continue to evolve. This article explores the basic knowledge of rubber processing, key technologies, and future trends.
Headline
Knowledge
Understanding the Coffee Robot: A Comprehensive Analysis
This article provides a comprehensive overview of coffee robots—automated machines that brew and serve coffee using advanced robotics and artificial intelligence. It outlines their key features, including AI-driven customization, app connectivity, 24/7 efficiency, and diverse drink options. The report also examines their growing impact on the coffee industry, highlighting benefits for both consumers and businesses such as convenience, consistency, and reduced labor costs. Case studies like CafeXbot, Artly Coffee, and Rozum Café illustrate how coffee robots are reshaping the coffee experience and driving market growth worldwide.
Headline
Knowledge
Understanding PU Foam: Properties, Types, and Industrial Uses
PU foam is no longer merely a cushioning material. It has become a core functional component across sports, medical, fashion, and lifestyle industries. By adjusting density, thickness, and surface feel, PU can meet diverse requirements for breathability, antimicrobial performance, durability, and comfort. It also aligns with brand trends toward eco-friendly formulations and recyclable material solutions.
Headline
Knowledge
Understanding Helical Filters: A Comprehensive Overview
Helical filters are essential components in radio frequency (RF) and microwave engineering, playing a key role in signal filtering and processing. Known for their compact size, high Q-factor, and broad frequency range, these filters are widely used across various industries. This report provides an in-depth look at helical filters, including their structure, operating principles, advantages, limitations, and typical applications.
Headline
Knowledge
Boost Your Device’s Performance: A Guide to Choosing the Right Power Supply
Choosing the right power supply unit (PSU) is crucial for maximizing your device's performance, ensuring stability, and prolonging the lifespan of your components. A PSU is not just a simple component that provides power; it is the heart of your system that ensures each component receives the right amount of power safely and efficiently. This report will guide you through the essential considerations and steps to select the ideal PSU for your needs.
Headline
Knowledge
How to Choose the Ideal Wood Screws for Furniture and Cabinetry
Selecting the right wood screws is essential to building strong, stable, and visually appealing furniture or cabinets. Key factors include screw size, length, thread type, head style, and compatibility with different wood materials. Coarse threads suit softwoods, while fine threads are better for hardwoods. Choosing the proper head type ensures both function and aesthetics, while accounting for environmental changes helps maintain joint integrity. Pre-drilling pilot holes can also prevent splitting, especially in dense wood. By understanding these considerations, woodworkers can achieve durable, high-quality results in their projects.
Headline
Knowledge
How Effective Coolant Management Promotes Sustainable CNC Machining
Sustainable CNC machining increasingly relies on effective coolant management to reduce environmental impact, cut costs, and improve machining performance. Coolants are essential for lubrication, heat control, and chip removal, but improper handling leads to waste and higher expenses. Proper management practices—such as regular monitoring, filtration, recycling, automation, and using eco-friendly coolants—help extend coolant life, maintain machine health, and ensure consistent product quality. Although initial investment may be a barrier, the long-term benefits include cost savings, reduced waste, and enhanced operational efficiency. Future advancements in IoT and AI are expected to further optimize coolant systems, reinforcing sustainability in CNC machining.
Headline
Knowledge
A Complete Guide to Selecting the Ideal Paper Cups for Hot Beverages
This guide provides a detailed overview of how to choose the best paper cups for hot beverages. It explores the different types of cups—single-wall, double-wall, insulated, and eco-friendly—and explains their unique features and ideal use cases. Key factors to consider include beverage temperature, insulation needs, cup size and lid compatibility, environmental impact, and safety standards. The article also outlines best practices for both consumers and businesses to ensure safe use and responsible disposal. Ultimately, selecting the right paper cup depends on balancing functionality, comfort, sustainability, and cost.
Headline
Knowledge
Understanding the Difference Between Reverse Osmosis and Traditional Water Filters
An in-depth comparison between reverse osmosis (RO) and traditional water filters, two widely used methods for purifying drinking water. It outlines how RO uses a semi-permeable membrane to remove dissolved salts, heavy metals, and microorganisms, making it ideal for areas with highly contaminated water. In contrast, traditional filters rely on physical and chemical filtration - often using activated carbon - to improve taste and remove larger particles. While RO systems offer superior contaminant removal, they come with higher costs and water usage. Traditional filters are more affordable and environmentally friendly but less effective against microscopic impurities. The article concludes that the best choice depends on specific water quality needs, and in some cases, combining both systems can offer the most comprehensive solution.
Agree