What is Vacuum Forming?
Knowledge

What is Vacuum Forming?

Thermoforming or vacuum forming is a common method of processing plastic materials, and vacuum formed products are ubiquitous in daily life. The process involves heating a plastic sheet until soft and then placing it over a mold. A vacuum then draws the soft sheet into the mold. The sheet is allowed to cool and is then removed from the mold.
Published: May 04, 2022
What is Vacuum Forming?

What is Vacuum Forming?

Vacuum forming is a thermoforming process. The processing principle of vacuum forming is to heat and soften the thermoplastic plastic sheet, then stick the sheet on the mold, and vacuum the side of the coating, so that the sheet can be more closely attached to the mold. After the sheet has cooled, it is set to the shape of the mold.

In simple terms, vacuum forming is a manufacturing method used to shape plastic material by heating a sheet of plastic and then pulling it around a mold using suction.

Processing of Vacuum Forming:

While the vacuum forming principle itself is fairly basic, vacuum forming processes often utilizes sophisticated pneumatic, hydraulic, and thermal controls to enable higher production speeds and a wider range of precision vacuum forming applications.

Applications of Vacuum Forming:

Vacuum forming can be used for a wide range of manufacturing applications, from small custom parts produced on benchtop equipment to large parts made on automated industrial machinery. It is often used in the production of blister packaging, handmade boxes, closures, workboxes, fruit and food boxes, and other products. Almost all thermoplastics can be manufactured by vacuum forming, including PVC, PTE, PS, PP, etc.

Production characteristics of Vacuum Forming:

  • Vacuum forming offers several processing advantages over other forming processes. Relatively low-cost tooling can be achieved using low forming pressures. Since the vacuum forming process uses low pressure, the requirements for the mold material are not high, and the mold manufacturing time is relatively short. Therefore, it is a relatively economical production method to produce prototypes or to custom make small quantities of large parts. It can be used for continuous automated production of high-volume items such as disposable cups.
  • Unlike other thermoplastic forming processes, vacuum forming uses extruded plastic sheets. For vacuum forming, secondary processing may be required to trim the formed sheet to complete the finished part. The trimmed waste can then be reground and recycled.

How does vacuum forming work?

  1. Clamps: Place a piece of plastic in the open frame and clamp it in place.
  2. Heat: Use a heat source to soften the plastic sheet until it reaches the proper molding temperature and becomes pliable.
  3. Vacuum: The heated flexible plastic sheet and frame are lowered over the mold and pulled into place by the vacuum on the inner side of the mold. The mold has small holes drilled in it so that the vacuum can pass through the holes to draw the thermoplastic sheet onto the mold.
  4. Cooling: Once the plastic is drawn around the mold, it is allowed to cool. For larger workpieces, fans and cooling mist are sometimes used to speed up this step in the production cycle.
  5. Demolding: After the plastic has cooled, it can be removed from the mold frame.
  6. Trimming: Excess material needs to be cut from the finished part, and the edges may need to be trimmed, sanded, or smoothed.

The heating and vacuuming steps are fast and usually only take a few minutes. Depending on the size and complexity of the part being manufactured, cooling, trimming, and making the mold can take longer.

What are the Methods of Vacuum Forming?

Vacuum forming methods mainly include concave mold vacuum forming, convex vacuum forming, concave and convex mold vacuum forming successively, blown vacuum forming, auxiliary convex vacuum forming and vacuum forming with an air buffer device.

  1. Concave vacuum forming:
    Concave vacuum forming is the most common vacuum forming method. After the plastic sheet has been softened and placed over the mold, the air under the sheet is evacuated to form a vacuum. The plastic sheet is formed against the mold under atmospheric pressure. The plastic parts are cooled and compressed air is introduced into the lower air holes to blow out the formed products. Concave vacuum forming is suitable for products with a small depth. If the depth of the product is too large, the plastic sheet will be stretched too much, which will cause the bottom to be too thin.
  2. Convex vacuum forming:
    Convex vacuum forming is usually used where the inner surface of the molded plastic part requires a high dimensional accuracy. The softened plastic is drawn over the mold, so that the mold forms the inside of the item. This method is used for thin-walled plastic parts with convex shapes.
  3. The concave and convex molds are vacuumed successively:
    After softening, the heater is removed, and compressed air is blown through the mold to make the plastic sheet bulge. The mold is then inserted downward into the bulging plastic sheet and vacuumed into the mold. At the same time, compressed air is passed into the female mold, so that the plastic sheet is pushed against the outer surface of the mold and formed. With this molding method, since the softened plastic sheet is blown and stretched before forming, the sheet thickness is relatively uniform, making it useful for forming plastic parts with deep cavities.
  4. Blown vacuum forming:
    Some blister parts that require a more uniform wall thickness can be vacuum formed by first stretching the plastic sheet by blowing it up like a balloon inside an airtight box. First the sheet is heated and compressed air is blown into the airtight box to blow the sheet outward. The mold is then raised up under the sheet and the air is evacuated from the box. Outside atmospheric pressure will then form the sheet around the mold. With this molding method, the thickness of the plastic sheet is reduced in advance so that the thickness will remain uniform throughout the final molding.
  5. Convex vacuum forming methods:
    Convex vacuum forming is divided into downward vacuum forming and upward vacuum forming.
    For the upward vacuum forming process, the plastic sheet is heated over the mold in an airtight container. The mold is them pushed up so that the air inside the container pushes and stretches the plastic sheet up. Air is then let out of the container so that the stretched sheet can be drawn back down over the mold using regular vacuum forming.
    The advantage of upward vacuum forming is that the plastic sheet does not contact the mold as it is being pushed up and expanding. If downward vacuum forming is used, the sheet is not initially stretched, so when it first contacts the mold, the thickness till be less uniform and sturdy.
  6. Vacuum forming with air buffer:
    After heating the plastic sheet, a combination of a plunger and compressed air is gently pressed against the sheet. Compressed air is then blown into the cavity around the mold to blow the heated plastic sheet onto the mold. At this time the sheet is between two air buffer layers, and the mold gradually descends. The compressed air is then evacuated so that the plastic sheet forms around the mold. The wall thickness of the plastic parts formed by this method is relatively uniform, and deeper plastic parts can be formed.

What is the Difference Between Vacuum Forming, Thermoforming, and Pressure Forming?

  • Thermoforming is a manufacturing process in which a piece of plastic is heated to make it pliable and then shaped or contoured using a mold and trimmed to make a final part or product. Both vacuum forming and pressure forming are different types of thermoforming processes. The main difference between pressure forming and vacuum forming is the number of molds used.
  • Vacuum forming is a relatively simple type of plastic thermoforming that uses mold and vacuum pressure to achieve the desired part geometry.
  • Thermoforming includes two basic mold types, male and female. For male molds, plastic sheets are placed on the mold to outline the internal dimensions of the plastic part. For female molds, thermoplastic sheets are placed within the mold to precisely form the outer dimensions of the part.
  • In compression molding, a heated plastic sheet is squeezed between two dies. Compression forming is ideal for making plastic parts that require precise shaping or require deeper drawing.
Published by May 04, 2022 Source :bpf, Source :formlabs, Source :newton

Further reading

You might also be interested in ...

Headline
Knowledge
Essential for Precision Machining: A Complete Guide to Tungsten Carbide Center Drills
In modern manufacturing, precision is the core standard by which product quality and performance are measured. From aerospace components to medical devices, even a minor deviation can lead to serious consequences. When it comes to precision drilling, a critical challenge is ensuring that a drill bit can be accurately positioned at the start of a cut while maintaining stability during high-intensity operations. The tungsten carbide center drill is the professional tool engineered specifically to solve this problem.
Headline
Knowledge
From Cavitation Effect to Industrial Applications: The Secrets of Ultrasonic Cleaning
When your glasses, tableware, or electronic components are stained with stubborn dirt, what can you do? Traditional methods often require vigorous scrubbing or even harsh chemical solvents, which are not environmentally friendly and may scratch the item. At this moment, ultrasonic cleaning acts like an “invisible little helper”, reaching deep into grooves and gaps to gently yet effectively remove contaminants.
Headline
Knowledge
The “Spark Magician” of Metalworking
Electrical Discharge Machining (EDM) is a non-traditional machining process that removes metal through electrical sparks. Unlike conventional methods, it is not limited by material hardness and can precisely create deep cavities, micro-holes, and complex structures in hardened steel, tungsten carbide, or superalloys. The three main types of EDM include wire cutting, die-sinking, and hole drilling, which are widely applied in mold making, aerospace, automotive, and medical industries. Although EDM has a slower processing speed, works only with conductive materials, and requires consideration of electrode wear and surface treatment, its advantages in high precision, zero cutting force, and superior surface finish make it an indispensable technology in precision manufacturing. Moreover, it continues to evolve in line with the trend toward smart manufacturing.
Headline
Knowledge
Press Brake vs Shearing Machine: Functional and Technical Comparison of Industrial Processing Equipment
Press Brake and Shearing Machine are two essential types of equipment in the field of machine tools, widely used in the processing of metal, wood, and other materials. They play critical roles in manufacturing, enabling efficient and precise material forming and cutting. This article introduces the definitions, functions, technical features, and applications of folding and cutting machines, offering neutral and practical knowledge sharing.
Headline
Knowledge
Master Chuck Types & Selection: The Essential Guide for Machinists
In the world of precision manufacturing, every minute detail can determine the quality of the final product. The chuck is a critical yet often overlooked component—it's not just a tool for holding a workpiece, but the very heart of ensuring machining accuracy, efficiency, and safety. This article will take you on a deep dive into the diverse universe of chucks, covering their operating principles, design philosophies, common types, and how to select the right jaws and chucks for different needs. Whether you're new to the industry or a seasoned engineer, this guide will unlock the intricate secrets of chucks, helping you master every detail on your path to manufacturing success.
Headline
Knowledge
An Overview of Electrical Discharge Machining (EDM)
Electrical Discharge Machining (EDM) is a non-traditional manufacturing process that utilizes electrical sparks to remove material from a workpiece. Unlike conventional machining methods such as milling or turning, which rely on physical contact between a tool and the material, EDM operates without direct contact, making it ideal for processing hard or brittle materials that are difficult to machine otherwise. The process involves generating a series of rapid electrical discharges between an electrode and the workpiece, submerged in a dielectric fluid, which erodes the material through thermal energy. This technique has revolutionized precision manufacturing by enabling the creation of complex geometries with high accuracy.
Headline
Knowledge
Applications of Machine Tools in the Aerospace Industry
The aerospace industry is a highly specialized and technology-driven sector, encompassing the design, manufacturing, and maintenance of aircraft, spacecraft, satellites, and related equipment. Machine tools play a critical role in this field, enabling the precision machining of complex metal and composite material components. These tools enhance production efficiency while ensuring the accuracy and reliability required to meet the stringent safety and performance standards of aerospace. This document outlines the key applications, technologies, benefits, and future trends of machine tools in the aerospace industry.
Headline
Knowledge
Smart Healthcare Uncovered:How AI Is Transforming Clinical Practice?
With the rapid rise of artificial intelligence (AI), the healthcare industry is undergoing a disruptive transformation. AI is significantly improving diagnostic accuracy and treatment efficiency while profoundly redefining healthcare professionals’ roles and patient experiences. A comprehensive understanding of the core technologies and clinical applications behind this transformation is essential for grasping the future trends and strategic directions of smart healthcare.
Headline
Knowledge
Principle and Applications of Laser Cutting Machines
As the global manufacturing industry advances toward higher precision and efficiency, laser cutting technology has become a key enabler of industrial upgrading. Compared with traditional shearing, stamping, and mechanical cutting, laser cutting offers non-contact processing, higher accuracy, and greater flexibility. It significantly improves productivity while reducing secondary finishing. Today, it is widely adopted in metalworking and increasingly applied in electronics, aerospace, medical, and architectural design industries.
Headline
Knowledge
Why Are High-Quality Cutting Fluids Critical for Machining Quality?
In CNC and metalworking, cutting fluid is no longer just a coolant—it plays a critical role by providing lubrication, chip removal, and corrosion protection. With the right formulation and concentration, it can reduce cutting heat, minimize friction, extend tool life, and maintain workpiece accuracy. High-pressure cooling further enhances efficiency in deep-hole and high-speed machining. The pairing of tool material with the proper cutting fluid is equally crucial; correct selection and maintenance ensure process stability, prolong equipment life, and improve the overall work environment. Cutting fluid has become an indispensable investment in modern precision manufacturing.
Headline
Knowledge
Introduction to Emerging Printing Technologies: Opening New Horizons for the Future of Printing
With rapid technological progress and increasingly diverse market demands, traditional printing techniques are no longer sufficient to meet modern industry’s requirements for precision, efficiency, and sustainability. As a result, emerging technologies such as UV printing, 3D printing, and Nanoimprint Lithography (NIL) have risen to prominence, offering solutions with higher precision, broader applications, and lower production costs. These innovations have already demonstrated value across packaging, advertising, healthcare, semiconductors, and construction. In the following sections, we will explore their technical features and real-world applications, highlighting the advantages and future potential of these cutting-edge printing technologies.
Headline
Knowledge
The Core Standard for Life-Critical Systems: A Complete Guide to IPC Classification
In high-risk fields such as medical, aerospace, and automotive, IPC classifications determine PCB reliability and safety. Class 3 represents the highest standard, requiring zero tolerance for defects, complete via filling, adequate copper annular rings, and rigorous inspections to ensure operation under extreme conditions, while Class 2 suits long-term use in non-critical equipment with minor cosmetic flaws allowed. Class 3’s strict criteria cover component placement, soldering, plating thickness, and environmental testing—adding cost and production time, but far outweighing the risks of failure in life- or safety-critical systems. Thus, defining high-risk equipment as Class 3 during design is essential, making IPC classification a core safeguard rather than an option.
Agree