3D Printing in the Automotive Industry
Knowledge

3D Printing in the Automotive Industry

3D printed end-use parts are going onto vehicles with increasing frequency. Recent real-world examples showcase additive manufacturing benefits in design, weight savings and more.
Published: Mar 28, 2022
3D Printing in the Automotive Industry

3D printing has long been touted as a solution for prototypes, one-offs and small volumes, but can it find its way into large-scale production? Specifically, production in a high-volume industry like automotive?

The automotive industry has embraced 3D printing due to the inherent weight and cost reductions. It also allows for rapid prototyping of new or bespoke parts for test or small-scale manufacture. So, for example, if a particular part is no longer available, it can be produced as part of a small, bespoke run, including the manufacture of spare parts. Alternatively, items or fixtures can be printed overnight and are ready for testing ahead of a larger manufacturing run.

While it will likely still be some time before mass-market vehicles like the Honda Civic or Chevy Malibu sport 3D printed components, there are already compelling use cases for additive manufacturing (AM) in the automotive sector. Automakers are turning to the technology for its design freedoms, light weighting capabilities, material options and more. The quantities of these parts being 3D printed remain relatively small for now, but these low-volume and bespoke components point the way toward greater use of the technology in the future.

What Is 3D Printing?

3D printing, also known as an additive manufacturing, is a method of creating a three-dimensional object layer-by-layer using a computer created design. Layers of material are built up to create a 3D part. This is the opposite of subtractive manufacturing processes, where a final design is cut from a larger block of material. As a result, 3D printing creates less material wastage.

There are three broad types of 3D printing technology; sintering, melting, and stereolithography.

  1. Sintering is a technology where the material is heated, but not to the point of melting, to create high resolution items. Metal powder is used for direct metal laser sintering while thermoplastic powders are used for selective laser sintering.>/p>

  2. Melting methods of 3D printing include powder bed fusion, electron beam melting and direct energy deposition. These use lasers, electric arcs or electron beams to print objects by melting the materials together at high temperatures.

  3. Stereolithography utilizes photopolymerization to create parts. This technology uses the correct light source to interact with the material in a selective manner to cure and solidify a cross section of the object in thin layers.

How Long Does 3D Printing Take?

The printing time depends on a number of factors, including the size of the part and the settings used for printing. The quality of the finished part is also important when determining printing time as higher quality items take longer to produce. 3D printing can take anywhere from a few minutes to several hours or days. Speed, resolution and the volume of material are all important factors.

How Is 3D Printing Changing the Automotive Industry?

  1. Reshaping the Prototyping Process
  2. Prototyping has historically been the most common use case for 3D printing in the automotive industry. Thanks to the vastly increased speed at which prototyping can be carried out using 3D printing, rapid prototyping has become virtually synonymous with 3D printing, and the technology has revolutionized the product development process.

  3. Creating Custom, Complex, and High-Performance Parts
  4. 3D printing is ideal for producing custom parts at greatly reduced expense, empowering manufacturers with vast new capabilities in what they are able to produce and offer to their customers.

  5. Producing Tooling and Manufacturing Aids
  6. Engineers use manufacturing aids to make manufacturing and assembly processes simpler and more reliable, reducing cycle times and improving worker safety. Automotive factories and part suppliers use thousands of custom jigs and fixtures, each tailored and highly optimized for end-use. The result is a proliferation of custom tools, adding significant cost and complexity to the manufacturing process.

    Outsourcing the production of these custom parts to machining service providers who produce the parts from a solid billet of plastic or metal can delay production by weeks, while the long lead times also make it hard to adapt to changes on the factory floor.

    Additive manufacturing can cut the lead time to a few hours and also dramatically reduce costs when compared to outsourcing parts to an external vendor. As complexity doesn’t incur additional costs, the parts can also be better optimized for their end-use.

  7. Solving the Spare Parts Problem
  8. Spare parts have historically represented a challenge for the automotive industry. Demand by nature is sporadic and unpredictable, making the value of producing spare components a debatable financial decision in some instances. However, the value of products is more precarious and repairs more difficult in the absence of readily available spare parts. Producing spares in anticipation of later demand also requires great expenditure on storage and 3D printing is well-positioned to make a significant positive impact on the automotive industry’s spare parts problem.

  9. Easing General Parts Manufacturing
  10. As 3D printing processes become more affordable with respect to the cost of hardware and materials involved, we will see a progressive transition towards producing regular automotive parts. 3D printers can improve efficiency at the general parts manufacture stage. The breadth of materials offered through 3D printing is starting to meet the mechanical requirements of different components of a vehicle. As additive methods reach cost parity with traditional methods, it will make more sense from a productive and financial point of view to incorporate 3D printing further into general parts manufacturing.

Key Insights

While a full-body 3D printed car that is ready for market circulation is still some time away, there are some exciting projects and concept cars that signal the direction in which the industry is heading. As the understanding of the value of 3D printing continues to spread through the industry, and as the technology and available material base grow ever more versatile, this growing trend will continue.

Published by Mar 28, 2022 Source :Modern Machine Shop, Source :TWI, Source :formlabs

Further reading

You might also be interested in ...

Headline
Knowledge
Understanding the Logistics and Transportation Sector
As the number of e-commerce transactions continues to surge, there is a parallel increase in the demand for logistics services. Amidst the ongoing transformation and upgrade of the industry, the integration of smart technology has emerged as a pivotal factor in driving its development.
Headline
Knowledge
Understanding Mechanism Design and Its Practical Applications
Creating an effective mechanism design entails thoughtful consideration of factors such as materials, specifications, precision, manufacturing processes, and functionality. Moreover, it must be cost-effective to ensure the development of a successful mechanism design.
Headline
Knowledge
Understanding the Granulation Process
Plastic granulation technology plays a pivotal role in the manufacturing of plastic products and the recycling of resources. It is employed to produce a diverse range of plastic products or raw materials, offering both environmental and economic advantages.
Headline
Knowledge
What Constitutes Contemporary Architectural Frameworks for Robotic Computing?
The behavior of robots is frequently modeled as a computational graph, wherein data flows from sensors to computational technology, extending to actuators and then looping back. To enhance performance capabilities, robotic computing platforms need to adeptly map these graph-like structures to CPUs and specialized hardware, such as FPGAs and GPUs.
Headline
Knowledge
How Does the Electroplating Process Work for ABS Plastic?
Over the past few years, plastic electroplating has gained widespread popularity, particularly in the decorative electroplating of plastic components. Among the various types of plastic utilized in electroplating, ABS plastic stands out as the most extensively employed.
Headline
Knowledge
What Are the Fundamentals and Benefits of Choosing between Liquid and Powder Coating?
Metal fabricators aiming to venture into finishing processes should familiarize themselves with two prevalent options—liquid and powder coating—along with the prerequisites necessary for a company seeking to employ either or both.
Headline
Knowledge
Anticipating the Emerging Trends in the Global Laser Industry
In light of the evolving global industry demands, the laser industry and technology are shifting their focus towards meeting the requirements of 5G semiconductors and smart vehicle processes. While Taiwan's laser industry has a well-established foundation built over the years, sustaining international competitiveness necessitates a proactive advancement in independent laser technology.
Headline
Knowledge
What is the Purpose of Surface Treatment for Metals?
Defects are bound to arise during the reprocessing of mechanical equipment or parts related to metal. As a result, the final item's surface treatment process plays a crucial role, serving the dual purpose of enhancing aesthetics and providing protection. This process not only improves the performance of metal parts but also helps prevent rust.
Headline
Knowledge
Selecting a Hydraulic Press and Understanding its Manufacturing Procedure
Hydraulic presses find applications in compaction, assembly, pressing, forming, embossing, and stretching. They play a crucial role in compaction within the cosmetics sector, assembly in the automotive industry, molding of electronic products, and stamping in the home appliance industry.
Headline
Knowledge
Introduction to RFID Tags: The Significance of RFID in Modern Retail Supply Chains
There are two types of RFID systems: passive and active. For those unfamiliar with RFID, you may be curious about the distinctions between these types and which one suits your application best. In the following, we offer a brief explanation.
Headline
Knowledge
Anticipating the Emerging Trends in the Global Laser Industry
In light of the evolving global industrial demands, the laser industry and technology are shifting towards meeting the requirements of 5G semiconductors and advanced processes for smart vehicles. While Taiwan's laser industry has made substantial progress over the years, maintaining alignment with international advancements necessitates a proactive push in independent laser technology.
Headline
Knowledge
Exploring Sheet Metal: Defining Sheet Metal and its Various Applications, with a Focus on Laser Applications
The term originates from English, known as plate metal. Typically, certain metal sheets undergo plastic deformation either manually or through die-stamping to attain the desired shape and size. These sheets can then undergo additional shaping through welding or a limited amount of mechanical processing to create more intricate components.
Agree