Why Do We Need to Anodize the Precision Machined Parts?
Knowledge

Why Do We Need to Anodize the Precision Machined Parts?

Anodizing is a process of surface treatment. The final process of metal manufacturing is surface finishing, anodizing precision machined metal parts, a reliable and relatively inexpensive method to improve wear resistance and coloring aluminum and other non-ferrous metals.
Published: May 12, 2020
Why Do We Need to Anodize the Precision Machined Parts?

Anodizing is a process of surface treatment

Anodizing is an electrochemical conversion process that usually forms an oxide film in an electrolyte (chemical solution) on aluminum. The aluminum part is the anode (hence the name "anodization"), and current passes through them and the above electrolyte (most commonly sulfuric acid is used) between the cathode and the cathode, which is usually a flat aluminum strip. There are different types of anodizing, the most common being type I-chromic acid anodizing, type II-sulfuric acid anodizing, and type III hard anodizing or Mil-A-8625 name Hardcoat. Other less common types are phosphoric acid and anodized titanium. Anodizing is a porous structure grown from an aluminum matrix and can absorb color dyes well. This is done by using a secondary operation of organic or inorganic coloring.
Other common types include chromic acid anodizing, boric acid anodizing (BSAA), sulfuric acid anodizing, hard anodizing (hard coating), titanium anodizing, electrolytic two-step anodizing-AnoBlack EC.

Anodizing precision-machined parts can provide a reliable and relatively inexpensive method to improve wear resistance and color aluminum and other non-ferrous metals. This electrochemical process was first developed in the 1920s. It revolutionized many industries, requiring lightweight, strong, and corrosion-resistant aluminum profiles for window frames, decorative facade panels, and many other architectural elements.
Today, it can protect satellites, skyscraper facades, and components in many industries, from aerospace to medical, and is one of the most effective ways to manufacture durable and almost maintenance-free aluminum components.

How to do it? Anodizing is a form of highly controlled oxidation. Essentially, oxidation corrodes ferrous metals. However, if applied correctly to non-ferrous metals, the effect is reversed. Aluminum is a common choice because of its lightweight and corrosion resistance, but for titanium, magnesium, zinc, and other metals that lack iron, there are indeed processes.

The common method of anodizing aluminum is to immerse the part in a sulfuric acid bath, which will form tiny holes (nanopores) in the aluminum surface. An electric current is applied to the medium, and by adding a cathode, oxygen ions are released from the acid and combined with aluminum. This forms an oxide layer, and the color can be applied at this time if necessary. Finally, a sealant is applied to close the nanopores and any micro-cracks in the oxide layer.
Unlike electroplating or paint that only covers the surface, anodizing is part of the metal, so it does not flake, flake, or flake over time. Just like the black oxidation conversion process of steel alloys, since the oxidation is derived from the metal, it will not flake or flake.

Benefit of anodizing

  • Durability: As mentioned above, anodization changes the aluminum substrate at the molecular level. Anodized parts will not chip, flake or flake, and have extremely strong corrosion resistance and wear resistance. If sealed properly, wait at least five years in outdoor conditions.
  • Low Cost: High value. The service life of anodized aluminum parts is longer than its sprayed or plated similar parts, and the manufacturing cost is lower.
  • Safe for the Environment: Unlike spray coating and electroplating, anodizing does not produce hazardous waste or interfere with the recyclability of aluminum.
  • Easy to Maintain: The parts look original from production and have remained in this condition for many years. Soap and water or mild detergents can remove dirt and restore the finish relatively easily.
  • Aesthetics: The precision-processed parts are anodized to preserve the metallic luster of the parts, and the color is easy to repeat, which can be used in future production.
  • Improve lubrication: For internal components, the porosity of the unsealed anodized surface can improve the adhesion and lubricity of the adhesive. However, this may expose them to contaminants, and unsealed or partially sealed parts require special attention and consideration.
Precautions of working process
  • The positive factors are far greater than the negative factors, but anodizing is not a miraculous solution. Before choosing anodizing as the final application, the application and environment of each component must be carefully considered.
  • Long-term exposure to ultraviolet (UV) light will cause the dye to fade over time. More resistant dyes can be used, but UV resistance will reduce the range of available colors.
  • It is almost impossible to miss the make-up of anodized products. Although anodized surfaces are incredibly resistant to damage, they are not invincible. Even untrained eyes, paint modification is obvious.
  • Compared with paint, color choices are limited. With all the advantages of anodizing, paint will always provide more color options in exchange for higher cost and lower durability.
  • If you, unfortunately, hire an unqualified manufacturer, poor seals can cause corrosion of anodized parts.
  • Temperatures above 176 ° F (80 ° C) will rupture the anodized aluminum, which has a lower thermal conductivity and linear expansion coefficient than uncoated aluminum.
  • Anodizing can change the size of the components, with thickness ranging from .0002 inches to 0.002 inches (5 microns to 50 microns). This process increases the size of any surface by half the thickness of the oxide because the surface itself is half processed.
Published by May 12, 2020 Source :pioneerserviceinc, Source :anoplate

Further reading

You might also be interested in ...

Headline
Knowledge
How Magnetic Drive Pumps Enhance Chemical Reliability in the Evolving Printed Circuit Board (PCB) Industry
The global Printed Circuit Board (PCB) industry is undergoing rapid transformation, fueled by technological upgrades, supply chain restructuring, and rising demand from high-performance electronics. With the market expected to grow from USD 80.3 billion in 2024 to USD 96.5 billion by 2029, manufacturers must focus on improving production stability, chemical reliability, and environmental compliance to stay competitive.
Headline
Knowledge
How to Choose the Right Ball Bearing Drawer Slide: Light, Medium, or Heavy Duty?
Choosing the right Ball Bearing Drawer Slide is essential for smooth operation, reliable load support, and long-lasting performance.
Headline
Knowledge
Stop the Stress: 5 Non-Negotiable Questions to Ask Your Bubble Tea Ingredient Supplier Today
Opening a bubble tea shop is exciting, but the reality is built on a complex, global supply chain.
Headline
Knowledge
Exploring the Pros and Cons of Seal-less Magnetic Drive Pumps in Industrial Use
Industrial process engineers are increasingly adopting seal-less magnetic drive pumps to enhance system safety and reliability. Unlike traditional pumps that rely on mechanical seals, magnetic drive pumps offer a fully enclosed structure that eliminates leakage risks—a major advantage when dealing with corrosive or toxic liquids.
Headline
Knowledge
H-Beams and I-Beams: Modern Cutting Methods for Structural Steel
In structural engineering projects such as bridges, high-rise buildings, and industrial facilities, the accurate cutting of H-beams and I-beams is vital for ensuring safety and structural integrity. Fabricators utilize a variety of cutting methods to meet project demands, including laser cutting, plasma cutting, water jet cutting, and large band saws.
Headline
Knowledge
Essential for Precision Machining: A Complete Guide to Tungsten Carbide Center Drills
In modern manufacturing, precision is the core standard by which product quality and performance are measured. From aerospace components to medical devices, even a minor deviation can lead to serious consequences. When it comes to precision drilling, a critical challenge is ensuring that a drill bit can be accurately positioned at the start of a cut while maintaining stability during high-intensity operations. The tungsten carbide center drill is the professional tool engineered specifically to solve this problem.
Headline
Knowledge
From Cavitation Effect to Industrial Applications: The Secrets of Ultrasonic Cleaning
When your glasses, tableware, or electronic components are stained with stubborn dirt, what can you do? Traditional methods often require vigorous scrubbing or even harsh chemical solvents, which are not environmentally friendly and may scratch the item. At this moment, ultrasonic cleaning acts like an “invisible little helper”, reaching deep into grooves and gaps to gently yet effectively remove contaminants.
Headline
Knowledge
The “Spark Magician” of Metalworking
Electrical Discharge Machining (EDM) is a non-traditional machining process that removes metal through electrical sparks. Unlike conventional methods, it is not limited by material hardness and can precisely create deep cavities, micro-holes, and complex structures in hardened steel, tungsten carbide, or superalloys. The three main types of EDM include wire cutting, die-sinking, and hole drilling, which are widely applied in mold making, aerospace, automotive, and medical industries. Although EDM has a slower processing speed, works only with conductive materials, and requires consideration of electrode wear and surface treatment, its advantages in high precision, zero cutting force, and superior surface finish make it an indispensable technology in precision manufacturing. Moreover, it continues to evolve in line with the trend toward smart manufacturing.
Headline
Knowledge
Press Brake vs Shearing Machine: Functional and Technical Comparison of Industrial Processing Equipment
Press Brake and Shearing Machine are two essential types of equipment in the field of machine tools, widely used in the processing of metal, wood, and other materials. They play critical roles in manufacturing, enabling efficient and precise material forming and cutting. This article introduces the definitions, functions, technical features, and applications of folding and cutting machines, offering neutral and practical knowledge sharing.
Headline
Knowledge
Master Chuck Types & Selection: The Essential Guide for Machinists
In the world of precision manufacturing, every minute detail can determine the quality of the final product. The chuck is a critical yet often overlooked component—it's not just a tool for holding a workpiece, but the very heart of ensuring machining accuracy, efficiency, and safety. This article will take you on a deep dive into the diverse universe of chucks, covering their operating principles, design philosophies, common types, and how to select the right jaws and chucks for different needs. Whether you're new to the industry or a seasoned engineer, this guide will unlock the intricate secrets of chucks, helping you master every detail on your path to manufacturing success.
Headline
Knowledge
An Overview of Electrical Discharge Machining (EDM)
Electrical Discharge Machining (EDM) is a non-traditional manufacturing process that utilizes electrical sparks to remove material from a workpiece. Unlike conventional machining methods such as milling or turning, which rely on physical contact between a tool and the material, EDM operates without direct contact, making it ideal for processing hard or brittle materials that are difficult to machine otherwise. The process involves generating a series of rapid electrical discharges between an electrode and the workpiece, submerged in a dielectric fluid, which erodes the material through thermal energy. This technique has revolutionized precision manufacturing by enabling the creation of complex geometries with high accuracy.
Headline
Knowledge
Applications of Machine Tools in the Aerospace Industry
The aerospace industry is a highly specialized and technology-driven sector, encompassing the design, manufacturing, and maintenance of aircraft, spacecraft, satellites, and related equipment. Machine tools play a critical role in this field, enabling the precision machining of complex metal and composite material components. These tools enhance production efficiency while ensuring the accuracy and reliability required to meet the stringent safety and performance standards of aerospace. This document outlines the key applications, technologies, benefits, and future trends of machine tools in the aerospace industry.
Agree