What are the Applications of CNC Machines?
Knowledge

What are the Applications of CNC Machines?

In the manufacturing application of digital technology, CNC machining has been focusing on the improvement of the precision and accuracy of material processing, as well as the improvement of the operating process, so that most production processes can be completed on one machine, thereby improving overall production and efficiency, and reducing costs.
Published: May 05, 2022
What are the Applications of CNC Machines?

What is CNC Machining?

CNC stands for "Computer Numerical Control" and CNC machining is defined as a subtractive manufacturing process, usually using computer controls and machine tools, to produce custom-designed parts. CNC machining works on a variety of materials, including metal, plastic, wood, glass, foam, and composites, and is used in a wide variety of industries. Examples include large CNC machining of telecom parts and prototyping, and CNC machining of aerospace parts.

Programmable CNC machining instructions are capable of instructing the CNC machine to autonomously perform CNC machining operations.

CNC Machining Process:

CNC machining is a manufacturing process that utilizes computer controls to operate and manipulate machines and cutting tools to shape raw materials, such as metal, plastic, wood, foam, composites, etc., to produce custom parts.

CNC machining operations include mechanical, chemical, electrical, and thermal machining, whereby the necessary material is removed from the workpiece to produce a custom-designed part or product.

CNC machining process and operations include the following stages:
  • Design CAD models
  • Convert CAD files to CNC programs
  • Equipped with CNC machine or CNC machining center
  • Execute machining operation instructions

Different Types of CNC Machines and CNC Machining Operations:

  1. CNC Drilling Machines:
    The drilling process uses a multi-point drill to create a cylindrical hole in the workpiece. In CNC drilling, typically the CNC machine feeds the rotary drill perpendicular to the plane of the workpiece surface, resulting in vertically aligned holes with a diameter equal to the diameter of the drill used for the drilling operation. However, oblique drilling operations can also be performed by using specialized machine configurations and work holding devices. The operational capabilities of the drilling process include reaming, countersinking, and tapping.
  2. CNC Milling Machines:
    The milling process removes material from a workpiece by rotating a multi-point cutting tool. In CNC milling, the CNC machine usually feeds the workpiece into the tool in the same direction as the tool rotates, while in manual milling, the machine feeds the workpiece in the opposite direction to the tool rotation. The operational capabilities of the milling process include face milling, perimeter milling, and more.
  3. CNC Turning Machines:
    Turning is a single-point cutting tool that removes material from a rotating workpiece. In CNC turning, CNC lathes feed a cutting tool in a linear motion along the surface of a rotating workpiece, removing material on the circumference until the desired diameter is reached to produce cylindrical parts with external and internal features such as grooves, tapers, and thread. The operational capabilities of the turning process include boring, facing, grooving, and thread cutting. When it comes to CNC mills and lathes, milling and its rotary tools are better suited for more complex parts. However, lathes with rotating workpieces and stationary tools are best for making round parts faster and more accurately.

How does CNC Machining Work?

When the CNC system is started and the required cutting programming is entered into the software, the CNC will perform the specified cutting, milling, and other tasks.

What is CNC Machine Programming?

In CNC manufacturing, machines are operated through numerical control, in which a software program is specified to control objects. The language behind CNC machining, also known as G-code, is used to control various behaviors of the corresponding machine, such as speed, feed rate, and coordination.

Using a CNC machine, input the program through punch cards. The program of the CNC machine tool is input into the computer through the keyboard. CNC programming remains in the computer's memory. The code itself is written and edited by programmers. CNC systems provide a wider range of computing power but are also inevitably flawless, so CNC system design is not set in stone, and update prompts can be added to pre-existing programs by modifying the code.

Applications of CNC Machining:

CNC machining is a manufacturing process used in a variety of industries, including automotive, aerospace, construction, and agriculture.

CNC machining processes are suitable for a variety of engineering materials, including metals (such as aluminum, brass, stainless steel, alloy steel, etc.), plastics (such as PEEK, PTFE, nylon, etc.), wood, foam, composite materials, etc.

What is a CNC Product?

Computer Numerical Control (CNC) machining is a manufacturing process in which pre-programmed computer software dictates the movement of factory tools and machinery. The process can be used to control a range of complex machinery, from grinders and lathes to milling machines and CNC routers.

Types of CNC Machine Products:

The products manufactured by CNC include molds, electronic products, hardware, plastics, jewelry, handicrafts, hair accessories, furniture, locks, shoes, glasses, automobiles, mobile phone cases, buttons, middle frames, lenses, glass covers, toys, and other industries. It is suitable to produce mobile phone casings, screens, mobile power supply casings, eyeglass frames, plane reliefs, electronic components, fixtures, furniture panel TV casings, camera focusing hardware highlights, mobile phone buttons, mobile phone cameras, 3D complex hardware, hardware decorative parts, car frames, surgical instruments, aircraft engines, gears, hand tools, and garden tools, etc.

Advantages of CNC Machining and Products:

  • The automated nature of CNC machining enables the production of high-accuracy, high-precision, simple parts, and cost-effectiveness when completing one-off and medium-volume production runs.
  • High precision and high quality.
  • Data is easy to store and modify. If the programming is good, the machine tool can be used at different times and places to produce the same product. No redesign is required.
  • It can automatically change tools, feed materials, etc., with a higher degree of automation.
  • Adaptive control maintains the machine tool in optimum production conditions.
  • Longer tool life.
  • Can perform calibration of complex product specifications and shape requirements
  • Products can be mass-produced
Published by May 05, 2022 Source :thomasnet, Source :astromachineworks

Further reading

You might also be interested in ...

Headline
Knowledge
Exploring the Fundamentals and Key Principles of Welding
Welding is a process that uses "heat" and "electricity" to connect two pieces of metal, and the type of welding metal will also affect the welding results and technical requirements; like many professional skills, welding technology also has different levels of difficulty. First understand the most common types of welding introduction, principle teaching, and skill analysis.
Headline
Knowledge
The Advantages of Powder Coatings: Exploring Their Benefits
Powder coatings were developed in the 1950s as an alternative to traditional finishes such as liquid coatings. While the versatility and appeal of liquid coatings isn't likely to disappear anytime soon, powder coatings offer many advantages and are growing in popularity.
Headline
Knowledge
Understanding CBN Tools
CBN turning tools are tightly sintered from boron nitride and tungsten carbide bases. The hardness of boron nitride is next to PCD. It has excellent chemical stability and will not produce affinity with iron, cobalt, and nickel-based metals. Therefore, it is especially suitable for work hardening steel, with a hardness above HRC45. Chilled cast iron and heat-resistant steel (Inconel) are also suitable.
Headline
Knowledge
Understanding the Structure and Operation of a Slotting Machine
Slotting machines are reciprocating machines that are mainly used to manufacturing horizontal, vertical or flat surfaces.
Headline
Knowledge
A Comprehensive Examination of Hyperautomation and its Impact on Business Processes
Hyperautomation is the use of the power of multiple technologies to achieve end-to-end automation. Hyperautomation is the process of continuously integrating automation into an organization's business processes, combining advanced technologies such as robotic process automation (RPA), artificial intelligence, and machine learning to enhance the results of human work. Not only does it automate key processes, but it also builds an automation ecosystem that finds more processes that can be automated without human intervention.
Headline
Knowledge
5 Essential Values to Understand Automation
The emergence of automation has had a great impact on many industries. Many highly repetitive factory operations may restrict production capacity. With the introduction of Industry 4.0, various technologies have led to the automation of production lines, from the supplying of raw materials, to assembly, distribution, and packaging. People are taking notice of these very important developments, and this article will explore some of these new forms of automation, and the value they bring.
Headline
Knowledge
Understanding the Role of Rotary Broaching
Rotary broaches (also known as oscillating or hexagonal broaches) are one of the commonly used CNC tools in metal-cutting production. It is used to process polygonal parts and inner holes (especially suitable for blind holes) and other special-shaped inner holes.
Headline
Knowledge
Frequently Employed Processing Techniques
In the field of manufacturing processing, common processing methods include broaching, boring, grinding, milling, etc.
Headline
Knowledge
The Functioning of Laser Cutting Machines
Laser cutting technology Compared with traditional cutting, the laser cutting process has better accuracy, and precise details are cut through a high-intensity laser beam.
Headline
Knowledge
What Constitutes Pneumatic Tools: Components, Pros, and Cons?
A pneumatic tool is a device that uses compressed air from an air compressor as the power source for the tool. Pneumatic tools are very sturdy and because they do not use electricity, can be used in areas where the tool may be exposed to inflammable, explosive, dusty, or humid, harsh environments. Owing to their high stability, long working life, and easy maintenance, they are widely used in industrial fields.
Headline
Knowledge
What Purpose Do Vernier Calipers Serve?
One of the tools a mechanic must use is a caliper. Although not as accurate as a micrometer, the caliper is a convenient and practical tool that can help mechanics quickly measure parts and use the measurement results to evaluate subsequent processing.
Headline
Knowledge
How Familiar Are You with Hardware Fasteners?
When it comes to fasteners, everyone seems to know a little bit about it. After all, hardware such as screws and nuts are commonplace in life. Fasteners are widely used in many industries and the degree of standardization, serialization and generalization is extremely high.
Agree