Exploring the Power of Cubic Boron Nitride in Cutting Applications
Knowledge

Exploring the Power of Cubic Boron Nitride in Cutting Applications

Cubic Boron Nitride (CBN) turning tools are tightly sintered from boron nitride and tungsten carbide bases. The hardness of boron nitride is next to PCD. It has excellent chemical stability and will not produce affinity with iron, cobalt, and nickel-based metals. Therefore, it is especially suitable for work hardening steel, with a hardness above HRC45. Chilled cast iron and heat-resistant steel (Inconel) are also suitable.
Published: Jul 14, 2023
Exploring the Power of Cubic Boron Nitride in Cutting Applications

In the machining industry, CBN tools and CBN inserts are often mentioned cutting tools, which are mainly used for the cutting and processing of difficult-to-machine materials and superhard materials. So what kind of tool can be called a CBN tool? What does CBN mean?

What Does Cubic Boron Nitride (CBN) Mean?

Cubic boron nitride (CBN) is a material whose hardness is next to diamond. It is a new type of inorganic superhard material, which has been widely used in the processing fields of different industries.

As the name suggests, CBN tool is a kind of tool made of CBN material, which is a new type of tool material developed in the early 1970s. Since cubic boron nitride can withstand high temperature of 1300~1500℃, CBN tools can perform high-speed cutting of iron-based metals under high temperature conditions without reacting, with high machining accuracy, low surface roughness, and 10 times higher cutting speed than cemented carbide tools.

CBN tools can cut and process quenched high-hardness steel and other high-hardness materials, and realize the function of turning grinding instead of grinding, which has a significant practical effect on small and medium-sized machining enterprises that do not have grinding machines. For example, Bot CBN tool not only has high processing efficiency, but also can avoid surface burn and surface hard force caused by grinding, which greatly improves the surface quality of the workpiece.

CBN tools are widely used in many metal cutting industries due to their excellent properties such as high thermal hardness, high wear resistance and not easy to stick to the tool. The applicable scope mainly includes the following difficult-to-machine materials: various quenched steels, such as carbon tool steel, alloy steel, bearing steel, die steel, high-speed steel, etc.; thermal spray materials, such as Ni-based, Fe-based two series products; Grinding cast iron: such as V-Ti cast iron, high phosphorus cast iron and chilled cast iron, etc.; some workpieces such as titanium alloys and heat-resistant alloys.

The CBN blade can be fixed on the tool holder by mechanical clamping or welding, or the CBN sheet and cemented carbide can be pressed together to form a composite PCBN tool. For example, installing a CBN tool on a machine tool with better rigidity can give full play to the performance of the CBN tool and use it in various machining processes, saving costs and improving production efficiency.

At present, CBN tools are widely used in many machining processes in the automotive, aerospace and medical equipment industries. If you encounter difficult-to-machine materials with high hardness, you may try it with a CBN tool.

Which Materials Are CBN Tools Suitable for Machining?

As mentioned above, CBN tools are often used for cutting ferrous metals, mainly including high-hardness cast iron/cast steel/forged steel, quenched steel, ordinary gray cast iron, powder metallurgy and other difficult-to-machine materials (hardness of steel requires HRC45 or more).

  • High hardness cast iron/cast steel/forged steel: such as high chromium cast iron, alloy cast iron, nickel hard cast iron, white cast iron, high manganese steel, high speed steel and other materials can be processed, such as rollers, slurry pump casings, impellers, guard plate, lining plate, etc. are all typical parts. The overall polycrystalline CBN tool is mainly used for machining such workpieces, with a large allowance for cutting blanks, which improves production efficiency and reduces total production costs.
  • Hardened steel: parts such as hardened gears/gear shafts, bearings, molds, synchronizers, ball cage universal joints, and hardened rolls are typical hardened parts with a hardness of around HRC60. High surface finish.
  • Ordinary gray cast iron: such as engine block/cylinder head, brake disc, brake drum, pulley, clutch pressure plate, etc. are all gray cast iron materials. The use of CBN tools can advantageously replace the high-speed cutting of carbide inserts, and its cutting speed can be several times higher than that of carbide tools, and on the basis of ensuring high surface quality, the tool life is 10-20 times that of carbide inserts.

Which Processing Methods Are CBN Tools Suitable For?

  • High-speed cutting: It is mainly reflected in the field of ordinary gray cast iron. Due to the rising price of gray cast iron raw materials, the competition with enterprises has gradually increased. Initially, the maximum linear speed of gray cast iron with carbide inserts cannot exceed 350m/min, otherwise, severe wear will occur. However, using CBN tools to process gray cast iron can reach a maximum linear speed of 1500m/min (without considering the rigidity of the machine tool), and ensure high wear resistance and high workpiece surface quality.
  • Heavy-duty cutting: It is mainly reflected in the fields of high hardness cast iron/cast steel, such as rollers and pumps used in large equipment, and the machining allowance of blanks is large, and cutting tools with excellent wear resistance and impact toughness are required. Machining, and the CBN tool can reach a cutting depth of 10mm at a time, which greatly improves the production efficiency.
  • Dry cutting: No matter what kind of material is processed, CBN tools are firstly processed by dry cutting. CBN tools have strong red hardness at high temperature and can withstand normal cutting at a high temperature of 1200 °C to ensure excellent durability. In addition, unnecessary costs caused by using cutting fluid to process workpieces are reduced, and a good production environment is guaranteed.
Published by Jul 14, 2023 Source :ppfocus, Source :kknews

Further reading

You might also be interested in ...

Headline
Knowledge
Environmental Sustainability in EDM: Green Machining Practices
The environmental impact of Electrical Discharge Machining (EDM) is not exempt from the demand for eco-friendly practices and environmental sustainability. The industry is implementing energy-efficient technologies, waste reduction strategies, and the use of eco-friendly dielectric fluids. Recycling and disposal methods for EDM byproducts, along with certifications and standards guiding environmentally friendly practices, are actively shaping the sector.
Headline
Knowledge
EDM Applications in Exotic Alloys and Composites
Electrical Discharge Machining (EDM) has emerged as a versatile and indispensable tool for machining challenging materials, especially exotic alloys and composites. The demand for intricate components made from materials like titanium, nickel-based alloys, and bio-compatible materials in industries such as aerospace and medicine has challenged EDM technology to evolve and adapt. Techniques tailored to meet the demands of these specific industries have enabled EDM to excel in machining such materials.
Headline
Knowledge
Important Features of Bicycle Wheel Design and Construction
Bicycle wheels significantly impact the overall performance, handling, stability, speed, and comfort of the bicycle riding experience. The design, construction, anatomy, and setup are important considerations when choosing the right wheels. Well-designed wheels can enhance efficiency, responsiveness, and enjoyment while riding.
Headline
Knowledge
Smart EDM: The Integration of IoT and Automation
Electrical Discharge Machining (EDM) has long been a cornerstone of precision manufacturing, enabling the creation of intricate and complex parts with unparalleled accuracy. In recent years, the convergence of Internet of Things (IoT) technology and automation has ushered in a new era for EDM, transforming traditional machining processes into smart, connected systems. Automation plays a pivotal role in this transformation, streamlining processes and minimizing human intervention. From enhanced monitoring and diagnostics to improved efficiency, the integration of these technologies is paving the way for more efficient, productive, and predictive manufacturing.
Headline
Knowledge
Micro-EDM Marvels in Precision Engineering
Micro Electrical Discharge Machining (Micro-EDM) has emerged as a transformative precision engineering technology, unlocking new possibilities for manufacturing intricate and miniature components. Micro-EDM offers unique capabilities in advanced applications, including medical device manufacturing, aerospace components, and miniaturized electronics. Several unique solutions have been developed to address exceptional challenges associated with micro-scale machining in the electronics industry, medical implant manufacturing, and aerospace turbine blade production.
Headline
Knowledge
Cutting-Edge Innovations in EDM Technology
Electrical Discharge Machining (EDM) has undergone a remarkable evolution, transforming from a niche technology to a versatile and precise machining method. Key advancements of EDM technology have included the integration of advanced control systems, cutting-edge features, strides in tooling and electrode materials, and the applications and benefits of high-speed EDM.
Headline
Knowledge
Mastering Your Game: The Precision of Gaming Mice
The gaming mouse, once a mere peripheral, has evolved into a vital tool for gamers worldwide, enhancing gameplay through advanced technology and design. In the high-stakes world of competitive gaming, where every millisecond counts, the right equipment can mean the difference between victory and defeat. The gaming mouse is literally at the center of the action and must be designed for precision, speed, and ergonomics. Unlike their standard counterparts, gaming mice are built with advanced features that cater to the nuanced demands of video game enthusiasts. Let's take a look at what makes them unique.
Headline
Knowledge
Understanding the Logistics and Transportation Sector
As the number of e-commerce transactions continues to surge, there is a parallel increase in the demand for logistics services. Amidst the ongoing transformation and upgrade of the industry, the integration of smart technology has emerged as a pivotal factor in driving its development.
Headline
Knowledge
Understanding Mechanism Design and Its Practical Applications
Creating an effective mechanism design entails thoughtful consideration of factors such as materials, specifications, precision, manufacturing processes, and functionality. Moreover, it must be cost-effective to ensure the development of a successful mechanism design.
Headline
Knowledge
Understanding the Granulation Process
Plastic granulation technology plays a pivotal role in the manufacturing of plastic products and the recycling of resources. It is employed to produce a diverse range of plastic products or raw materials, offering both environmental and economic advantages.
Headline
Knowledge
What Constitutes Contemporary Architectural Frameworks for Robotic Computing?
The behavior of robots is frequently modeled as a computational graph, wherein data flows from sensors to computational technology, extending to actuators and then looping back. To enhance performance capabilities, robotic computing platforms need to adeptly map these graph-like structures to CPUs and specialized hardware, such as FPGAs and GPUs.
Headline
Knowledge
How Does the Electroplating Process Work for ABS Plastic?
Over the past few years, plastic electroplating has gained widespread popularity, particularly in the decorative electroplating of plastic components. Among the various types of plastic utilized in electroplating, ABS plastic stands out as the most extensively employed.
Agree