Breakthrough Data Processing Technology Helps Improve IoT Efficiency - Data Processing Speed is the Key to AI
Trend

Breakthrough Data Processing Technology Helps Improve IoT Efficiency - Data Processing Speed is the Key to AI

The vision of the Internet of Things is to make everyone's life better, safer, and more convenient. To achieve this goal, we must first increase the speed of data processing, generate real-time intelligence, and allow IoT data to make informed decisions in seconds.
Published: Jul 26, 2022
Breakthrough Data Processing Technology Helps Improve IoT Efficiency - Data Processing Speed is the Key to AI

The Internet of Things generates a large amount of data every day, and the amount of data generated every day in the world will reach 463EB. In many cases, IoT information is mostly transmitted in raw form, stored in data pools in cloud data centers, and then processed. But processing data in the cloud isn't fast enough for instant applications. AI training is teaching the system to perform prescribed tasks, and inference is the ability of AI to apply what it has learned to a specific task. The difference between the two is like someone who has learned to become an expert over many years and then uses the learned ability to do it on a case-by-case basis in real-time, to make a smart decision.

Digital transformation brings new opportunities and challenges to enterprise development. Companies around the world are actively investing in expanding AI infrastructure or investing in R&D-related technologies. AI is driving the progress of various industrial technologies.

When AI has changed from hypothetical future technology to a key business strategy asset, and competitors are rushing to invest in the introduction and development of related technologies, how to stay at the forefront of trends and gain insight into the next step in the market will become a thorny problem. According to the survey, most people believe that AI can help their companies transform. It is obvious that for many leaders, the introduction of AI technology is an inevitable process that triggers business growth. Enterprises should first convert data into smart data, and the speed of processing data is the key to the future development of AI.

In the digital age, intelligent data is an important asset of various industries, and data has become the basic source for promoting AI. At present, many industries that want to develop AI technology still focus on training and inference operations. It is easy to ignore that optimized software and hardware technology is a very important basis for processing a large amount of intelligent data. Only a mature and easy-to-operate platform can assist. Only in this way can the analysis and processing of large amounts of data be effectively accelerated under the AI generation. If you want to practice AI technology and applications on a large scale, you must build a simple infrastructure and ensure. This architecture is strong enough to support the operation of the entire organization, providing optimized, easy-to-use, and powerful solutions for enterprises and government organizations. It no longer takes weeks or months as it used to. When equipment manufacturers can provide a good AI application system architecture to eliminate the complexity that hinders the large-scale deployment of enterprises, it can help various industries to quickly transform and grasp the opportunities for the future development of AI. We also foresee that adopting a suitable software and hardware integration platform to facilitate the speed of data processing will be the key to winning the industry ahead of its peers in the AI era in the future.

Data Processing Technology:

The huge data volume and the existence of a considerable proportion of semi-structured and unstructured data in the big data era have surpassed the management capabilities of traditional databases. Big data technology will be a new generation of technology and architecture in the IT field. To help people store and manage big data and extract value from large-scale and highly complex data, related technologies and products will continue to emerge, which will likely open a new era for the IT industry.

The essence of big data is also data, and its key technologies include the storage and management of big data and the retrieval and use of big data. Emerging data mining, data storage, data processing, and analysis technologies will continue to emerge, making it easier, cheaper, and faster for us. To process massive amounts of data, become a good assistant for business operations, and even change the way many industries operate.

Cloud computing and its technologies give people the ability to obtain massive computing and storage cheaply, and the distributed architecture of cloud computing can well support large data storage and processing needs. Such low-cost hardware + low-cost software + low-cost operation and maintenance are more economical and practical, making it possible to process and utilize large data.

The Cloud Database Must Meet the Following Conditions:
  1. Mass data processing:For large-scale applications such as search engines and telecom operator-level business analysis systems, it needs to be able to process petabyte-level data and handle millions of traffic at the same time.
  2. Large-scale cluster management:Decentralized applications are simpler to deploy, apply, and manage.
  3. Low latency read and write speed:Fast response speed can greatly improve user satisfaction.
  4. Construction and operating costs:The basic requirement of cloud computing applications is to greatly reduce hardware costs, software costs, and labor costs.

Data Processing Mechanism:

Batch data processing and real-time data processing have their respective application fields. Enterprises should carefully evaluate their business needs and cost considerations so that these two mechanisms can be effectively used in the context of different data.

  1. Mechanism of batch data processing:
    Batch processing of large amounts of data can be divided into three main stages.
    • Stage 1: A large amount of data will be directly written to the hard disks of multiple machines in parallel to prepare for subsequent processing. This is the first hard disk write.
    • Stage 2: In the data processing stage, the user must submit the computing task in advance through the system scheduling, and wait for a specific scheduling time. When the scheduling is temporary, the system will load the data from the storage device into the memory and send it to the processor operation, and the result of the processor's operation is written back to the database.
    • Stage 3: Wait until the user wants to call the data, and then read the data from the hard disk.
    From entering the system to being called out by the user, the data has undergone a total of 2 hard disk read and write processes, so the speed will be relatively slow. The advantage of batch data processing is that it can purchase hard disks at a low price, and achieve rapid temporary storage of large amounts of data in a parallel way. If a power outage occurs, it will not affect the correctness of the data.
  2. Mechanism of real-time data processing:
    Use In-Memory technology with a structured database to process real-time structured data. First, in the data collection stage, the data is directly written to the memory instead of the hard disk. Next, the user can write the code in the co-processor, and decide in advance where the specified operation is performed at this timing. At regular intervals, the less commonly used cache data in the memory will be regularly written to the local hard disk, while the commonly used data will be triggered by appropriate conditions at any time and quickly sent to the processor for calculation. The result of the operation can be called directly from the processor.
    In the data processing stage, the data flow can be divided into two parts. Commonly used data will be cached in the memory, and whenever an event is triggered, it will be immediately moved to the processor for operation. The less frequently used data in the memory is periodically written to the hard disk to free up more memory to store frequently used data. Because the action of writing to the hard disk is to periodically determine whether there are commonly used data, in addition, the entire process does not perform hard disk I/O access, so it can respond to real-time data calls at a fast speed to deal with.
    However, compared with batch data processing, all the front-end data is directly written into the memory first. Therefore, to process a huge amount of data, a large amount of memory must be built to correspond. Compared with batch data The cost of processing front-end data on hard drives will be higher unless a portion of data that is not immediately required is moved to hard drives for storage. In addition, in the design of the In-Memory architecture, since data is only written to the hard disk periodically, once the system is powered off, the data that has not entered the hard disk will disappear, resulting in irreversible consequences.
    Google's Dremel technology, which can analyze a large amount of data in 1PB within 3 seconds, also includes In-Memory technology and uses many parallel operations to achieve real-time processing of large amounts of data. In addition, Dremel also uses In-Memory technology and the flexible design of the database algorithm to achieve the effect of incremental updates.
Published by Jul 26, 2022 Source :netadmin

Further reading

You might also be interested in ...

Headline
Trend
The Logistics Industry Shows a Trend of "Unmanned"
With the development of science and technology, especially the improvement of the level of automation control, more and more warehouses begin to use machines to replace human labor. In 2012, Amazon acquired KAVA Systems, and within two years, a large number of KAVA mobile robots were invested in the logistics center, which greatly improved the operation efficiency and reduced operating costs, thus setting off a boom in the application of AGV mobile robots in the warehouse sector.
Headline
Trend
AR Remote Maintenance Has Been Implemented in The Factory
Industry 4.0 has become an important application for factories to improve production efficiency. Remote Control Management (RCM) is a solution that smart factories need to consider importing. Remote centralized control, no open API, installation of software occupying machine system resources, etc., can be effectively solved through RCM to achieve manufacturing intelligence.
Headline
Trend
The Efficiency of The Smart Fitness Industry Has Increased Greatly. How Can New Technologies Continue the Trend of Home Fitness?
The new epidemic has already changed people's living habits. Among them, home fitness has set off a wave, and some consumers have purchased related equipment for this purpose. Even if the epidemic is over, they may not return to the gym again. Under this trend, how can companies such as Lululemon and Nike use technology and big data to create a better "home fitness" experience? The epidemic has sparked a wave of home fitness, driving the sales of all kinds of home fitness equipment soaring, such as kettlebells, dumbbells, etc. all sold out of stock. Many start-ups and sports brands have also sensed business opportunities, launched various home fitness equipment, and used high-tech, big data and other technologies to create user-friendly "home gyms".
Headline
Trend
The Era of Human-Machine Collaboration Is Coming, Are You Ready?
Humans and robots working together can greatly reduce enterprise costs and improve team work efficiency. Such a “Human-Robot-Collaboration, HRC” model is bound to become the mainstream in the future, bringing industrial innovation and a more convenient life.
Headline
Trend
Optical Computer Technology Integrates Digital Technology with Machinery
Optical fiber computer technology then entered the field of machinery, with applications in passive components, light guide plates, vehicles, batteries, biotechnology, and other industries.
Headline
Trend
Electric Vehicle Business Opportunities, Creating a New Generation of Automotive Components, and a New Industrial Layout
Under the international consensus on carbon reduction, the wave of electric vehicles has swept the world and has become the focus of attention from all walks of life. It is predicted that the proportion of electric vehicles will increase significantly from 2030, and it is estimated that it will reach 55% of the global car market by 2040, surpassing the proportion of traditional fuel vehicles. In the era of electric vehicles, it will indirectly lead the machine tool industry to develop a new layout.
Headline
Trend
Business Opportunities for Lightweight Electric Vehicles
With the global electric vehicle market, the speed of research and development of new electric vehicles has been accelerated, and the density of charging stations has been continuously increased. Under the booming development, when consumers buy electric vehicles, they hope to enjoy the convenience of battery as the existing internal combustion engine vehicles that enjoy the relatively high density of gas stations, and the short single refueling time. Don't want to spend too much unnecessary effort of "power charging".
Headline
Trend
What is WITMED?
Under the influence of the epidemic, the global demand for telemedicine has increased significantly. The development of digital medical care is an important means to promote medical equality and achieve comprehensive health coverage. Telemedicine care will become the new medical routine "New Normal", and the integration of AI wisdom in medical technology will be accelerated after the epidemic. An important trend with information flow.
Headline
Trend
Learn about Lean Manufacturing and Agile Manufacturing in Supply Chain Management
Both lean and agile manufacturing emphasizes leveraging market knowledge, integrating supply chains, and reducing product lead times.
Headline
Trend
HMI - The Future Mainstream of Industry 4.0
The new generation of HMI will replace traditional buttons, indicators and selectors with updated technology and components, reduce the dependence on a large number of display panels and cables, and reduce operating costs through advanced HMI functions to enhance monitoring of equipment.
Headline
Trend
What is Wide Bandgap (WBG)?
In the field of semiconductor materials, the first generation of semiconductors is Si, the second generation is GaAs, and the third generation of wide energy gap semiconductors refers to SiC and GaN.
Headline
Trend
The Future Development Trend of Light Sensors
A light sensor is a sensor that converts light signals into electrical signals using photosensitive elements. The light sensor is usually composed of a set of light projector and light receiver. Light sensors are generally composed of three parts: light source, optical path and optoelectronic components. The measured changes are converted into changes in optical signals are further converted into electrical signals with the help of photoelectric elements. In the future, with the development and popularization of Internet of Things technology, the application of light sensors will penetrate into all aspects of human life.
Agree