Understanding DevOps Corporate Culture and its Benefits
Trend

Understanding DevOps Corporate Culture and its Benefits

DevOps is an approach to corporate culture, automation, and platform design that enhances business value and resilience by delivering fast, high-quality services and relying on fast-paced and repeatable IT services.
Published: Sep 16, 2022
Understanding DevOps Corporate Culture and its Benefits

What is DevOps?

DevOps is composed of Development + Operations. Before a project goes online, it is written and developed by the R&D department. It needs to be tested many times before it goes online, and then it is handed over to the maintenance department for maintenance after it goes online. Through empathy, cross-teams and cross-skills can work closely together. Developers can think more about the difficulties that may be encountered at the maintenance level in their operations, and maintenance personnel can think about why they are designed or developed in this way. The purpose of DevOps is to interconnect traditional applications with newer cloud-native applications and infrastructure.

The concept of DevOps is the combination of Development software development, Operation technology maintenance, and Quality Assurance. Under the DevOps model, the original independent engineering team, operation team, and quality assurance team no longer work independently but can achieve closer collaboration, continuous communication, information integration, and transparency. The close cooperation of DevOps runs through all stages of the product life cycle, including program development, integration, testing, release and continuous monitoring of operations, quality assurance, etc. DevOps is not just the responsibility of engineers, but enterprises with software-type products should develop organizational culture.

DevOps Cultural Characteristics Include:

  • Co-working: Teams plan and work together and align business-related goals and success metrics.
  • Transfer of scope and responsibility: Through team coordination, people can gain ownership of participating in other life cycle stages, not just those for which their roles are primarily responsible.
  • Short release cycle: Shorten the development cycle, maintain agile development, respond quickly to market demands, and enhance market competitiveness.
  • Continuous learning: DevOps teams have a growth mindset, learn from failures, and continuously optimize the development process.

DevOps Core Concepts - CALMS:

  • Culture: DevOps is not a tool but a concept that represents the transformation of IT culture, through empathy and empathy, to make the cooperation between development and operations easier.
  • Automation: Automating processes increases efficiency, helps build agile teams, and produces high-quality products.
  • Lean: DevOps hopes to build agile development teams, so the lean production process is important, including the principles of reducing waste, delivering as soon as possible, and delaying decision-making. Delaying decision-making means that leaders can wait until they receive complete information decide.
  • Measurement: Use data to judge whether the decision is correct. If the number is abnormal, you can change the strategy at any time, so that the team can maintain agility.
  • Sharing: By sharing information between teams, the efficiency of problem-solving can be improved.

DevOps Lifecycle:

  • Plan: During the planning phase, the DevOps team defines the programs and system features currently under development. Track progress by category to achieve agile development. Such as the establishment of agency projects, instruments, use of workflow, development progress, etc.
  • Develop: DevOps teams seek rapid innovation to maintain quality. Many repetitive or general steps in the development process can be automated to improve efficiency, and automated testing can shorten the development cycle.
  • Deliver: The delivery process refers to the process of deploying an application to a production environment, including the infrastructure setup and composition of the environment. Use automation gateways to automate the process of mobile applications, making them easy to adjust, repeat, and control, practicing the spirit of DevOps with consistent and reliable delivery.
  • Operate: The operation phase includes maintaining and monitoring the application in a production environment, and troubleshooting in real-time. DevOps teams use real-time telemetry and alert release mechanisms to quickly identify and resolve issues to ensure high application availability.

What was the Motivation for Introducing DevOps?

The integration of different departments and tools will face many problems when the company's internal team cooperates. Using the automation and flexible processes of DevOps can not only solve the integration process but also respond to the rapid changes in market demand to ensure that tools and practical operations will not appear too much.

What are the Advantages of DevOps?

  • Deliver products faster: Continuous integration and continuous delivery are both practical applications of DevOps model automation software. Through their use, the frequency of version release and the speed of updates can be effectively improved. At the same time, the concept of DevOps emphasizes frequent and small release changes to reduce the possibility of each release risks encountered.
  • Stronger market competitiveness: When organizations continue to use DevOps continuous integration, automated processes for continuous delivery, and frequent, small release changes, it can speed up bug fixes and product releases. In this way, the shortened issuance cycle can not only respond to the needs of the market and customers more quickly but also establish a competitive advantage in the market.
  • Higher scalability: Automation is one of the goals of DevOps model development and maintenance. Through automation and consistency, the risk of system changes can be reduced, and the basic code can be reused repeatedly and efficiently, improving product scalability and extension.
  • Higher system stability and reliability: Continuous integration and continuous delivery capabilities test whether each change is stable and practical, and ensure that the quality of applications and infrastructure can be maintained at a certain level. In addition, the practice of monitoring and recording can also help to observe the real-time performance of the system.
  • Stronger security: Frequent and small-scale software modifications can reduce the risk of human error and improve security. By automating compliance policies and fine-tuning controls, you can ensure system security and compliance.
  • Better collaboration efficiency: One of the tenets of DevOps is to build an efficient team, make development, operations, and quality assurance teams work closely together, and combine their work processes to reduce communication gaps and inefficiencies between teams, and can effectively save development teams. The time of the handover period with the operations team. This approach enables faster product development and improvement than organizations using traditional software development and infrastructure management programs.

DevOps Practical Application:

  • Continuous development: This practice may involve the mechanism of version control and is closely related to the planning and coding phases of the DevOps and product life cycle.
  • Continuous integration: It is mainly used to track how much code is available for operation and to quickly identify and solve code problems to improve software quality. In this practice, after developers perform automated builds and tests, they need to regularly integrate code into a central repository to find problems in the shortest time possible.
  • Continuous delivery: Continuous Delivery is an extension of the continuous integration practice that automatically builds, tests, and changes code until release and production. If you want to promote it to the formal working environment, it is also decided at this stage.
  • Continuous monitoring and logging: To continuously monitor the running code, and all the underlying architectures that support this code, to observe how its performance affects end users. The data records obtained through continuous monitoring can be used as a basis for investigating the possible causes of errors or problems.
  • Infrastructure as code: Code is the infrastructure for using code and deploying and developing software, which can be used in various development and maintenance phases. Developers add infrastructure code to development tools, allowing operations teams to monitor the organization of the environment and track changes. Infrastructure can be deployed in a standardized pattern or replicated iteratively.
  • Security in DevOps: DevOps involves more than just development and operations teams. To get the most out of DevOps, organizations must consider how security impacts the application lifecycle. That means you must consider core security measures from the planning stage, and you must automate certain security functions to prevent DevOps Workflow slows down. Choosing the right tools to integrate security mechanisms can help you achieve the security goals of DevOps.

An effective DevOps security mechanism requires more than new tools and must be based on a DevOps cultural innovation to integrate the work of the security team as soon as possible. While DevOps can speed things up by closing the gap between development and operations, it can fail due to a poorly planned security program. In the past, security measures were in the final stages of development and dedicated to a set of independent teams. In today's collaborative DevOps architecture, security mechanisms are everyone's responsibility and should be integrated from the start.

Published by Sep 16, 2022 Source :webcomm, Source :glints

Further reading

You might also be interested in ...

Headline
Trend
Modern Scaffolding: A Guide to Revolutionizing Construction Safety & Efficiency
From the construction of the ancient pyramids of Egypt to the rise of modern skyscrapers, one crucial temporary structure has always played the role of an unsung hero: scaffolding. This support system not only provides a safe foothold for workers but has also continuously evolved from a simple framework into a highly efficient, precise, and intelligent engineering system.
Headline
Trend
The Connection Between Medical Device Manufacturing and Machine Tools
The medical industry is experiencing rapid growth, driven by an aging population, rising chronic diseases, and technological advancements. The demand for high-precision medical devices is increasing, requiring manufacturing processes that ensure safety, reliability, and performance. Machine tools play a critical role in meeting these stringent requirements, enabling the production of complex medical instruments with exceptional accuracy.
Headline
Trend
Smart Manufacturing in Printing: A New Era of Efficiency, Precision, and Sustainability
For over a century, the printing industry has been regarded as a relatively mature and stable sector. However, as market demand diversifies and the wave of digitalization accelerates, printing is undergoing a profound transformation. In the era of Industry 4.0, intelligence and automation have become the keywords of competitiveness. From AI (Artificial Intelligence) to IoT (Internet of Things), and the rise of post-press automation, these technologies are quietly reshaping every step of the printing process. Printing is no longer just about reproducing text and images; it is evolving into an era of “smart manufacturing” that is more efficient, precise, and environmentally friendly.
Headline
Trend
Industrial Applications of CNC in the Robotic Arm Industry
CNC technology is an automated system that precisely controls machinery through computer programs, widely applied across various manufacturing sectors. The robotic arm industry encompasses both industrial uses (such as assembly and welding) and service applications (such as latte art or maintenance). In Japan, for instance, people with disabilities can remotely operate robots from home for work. This industry is visibly experiencing rapid growth. According to 2025 market data, the global robotics market is expected to reach USD 50.8 billion, with service robots accounting for USD 40.58 billion, demonstrating strong growth potential. The application of CNC in the robotic arm industry extends beyond component manufacturing to control systems and versatile task execution.
Headline
Trend
From Solar to Wind: The Heart of Green Energy
When discussing the energy transition, attention often falls on the surface area of solar panels, the blades of wind turbines, or the massive structures of nuclear power plants. Yet behind these world-changing energy systems, the critical components that drive solar, wind, and nuclear operations rely heavily on precision-manufactured CNC machines. Often hailed as the “brains of manufacturing,” these machines, with micron-level precision and highly automated capabilities, serve as the invisible engine powering technological breakthroughs and future innovations in the energy sector.
Headline
Trend
Seeing the Future in Wood: How CNC Technology is Transforming the Woodworking Industry
Traditional woodworking has long been synonymous with craftsmanship. In the past, the meticulous shaping of wood required artisans wielding hand planes, relying on time and experience to perfect every piece. Today, however, we live in an era of automation, and CNC (Computer Numerical Control) machinery has become the backbone of modern woodworking. Through precise computer control and high-speed processing, CNC enables wood cutting, carving, and complex shaping with exceptional accuracy and consistency. The woodworking industry is entering a new phase centered around digital control, ushering in higher quality and greater value-added production.
Headline
Trend
The “Comeback” of Print: Rediscovering Vitality in the Age of Scattered Attention
Driven by the wave of digitalization, we have long grown accustomed to a daily life where information constantly “scrolls” into our view. E-books, online news platforms, and short videos occupy our fragmented time, while print publications were once seen as relics destined to fade away. Yet history is often full of reversals—just as digital media reached its peak in speed and density, print quietly returned to the stage, even becoming an “irreplaceable choice” for certain audiences. This phenomenon not only challenges our linear imagination of media evolution but also reveals deeper psychological needs behind human reading behaviors.
Headline
Trend
Next-Gen Aviation: How Advanced Materials Are Revolutionizing Aircraft
As technology advances, the design philosophy behind modern passenger aircraft is undergoing a profound transformation. The evolution of aircraft materials is no longer just about reducing weight; it's a comprehensive revolution encompassing intelligence, safety, and sustainability. From groundbreaking composites to self-diagnosing smart sensors and manufacturing techniques built on a circular economy, future aircraft won't just be cold machines. They’ll be intelligent, self-aware, safer, and more eco-friendly flying bodies.
Headline
Trend
Optimizing IoT: From Connected Devices to the Future of the Internet of Things
The Internet of Things (IoT) is far more than just connecting your phone to Wi-Fi or making your appliances smart. It’s a massive intelligent ecosystem where everyday "things" can network, communicate, and share information. Simply put, IoT is a network of smart devices and sensors that can exchange data. In this hyper-intelligent ecosystem, every machine, every sensor, and even every piece of clothing seems to have a voice, sharing real-time data and working together. The IoT is changing our world and driving the next wave of technological revolution.
Headline
Trend
Overview of the Aerospace Industry Chain
The aerospace industry, as a cornerstone of modern high-tech manufacturing, encompasses civil aviation, defense, and space exploration, while representing a high degree of integration in materials science, precision machining, and intelligent manufacturing. The entire industry chain spans from upstream development and supply of high-performance materials, through midstream precision component manufacturing and modular assembly, to downstream final assembly, flight operations, and maintenance. Each segment imposes stringent requirements on safety, reliability, and performance. With the continuous expansion of the global aviation market and the rapid development of carbon-neutral initiatives, smart manufacturing, and digital technologies, the aerospace industry chain has become highly complex and interdependent.
Headline
Trend
Global Energy Industry Chain Structure and Development Trends
The energy industry serves as the core driving force of the global economy, with a vast and complex industrial chain that encompasses the entire process from resource development and energy conversion to end-use applications. Driven by climate change, energy security, and technological innovation, traditional fossil fuels and emerging renewable energy sources are increasingly intertwined, gradually reshaping the global energy landscape. In this context, the energy industry chain is not merely an extension of supply chain management but also a critical nexus connecting policy, finance, technology, and markets. A comprehensive understanding of its upstream and downstream structure, as well as its development trends, has become essential for evaluating energy transition and industrial competitiveness.
Headline
Trend
Smart Healthcare Industry Chain Analysis: Core Segments and Future Trends in Medical Device Manufacturing
Smart Healthcare has emerged as a key driver of transformation in the global medical industry. At its core, it integrates medical devices, information technology, and data analytics to enhance diagnostic accuracy, treatment efficiency, and real-time health management. The medical device manufacturing value chain not only covers the design and production of precision equipment but also involves sensing technologies, materials engineering, hardware–software integration, and clinical applications—forming a highly specialized and cross-disciplinary ecosystem.
Agree