IT and OT Integration Technologies Are Available to Accelerate the Development of Smart Manufacturing
Trend

IT and OT Integration Technologies Are Available to Accelerate the Development of Smart Manufacturing

The US-China trade war has triggered a major reshuffle of the supply chain. The global manufacturing industry is facing unprecedented challenges. In the process of transforming smart manufacturing, the biggest problem is the integration of operating technology (OT) and information technology (IT). Only by working with the smart manufacturing ecosystem can we have a chance to survive in the changes and seize future business opportunities.
Published: Jul 30, 2020
IT and OT Integration Technologies Are Available to Accelerate the Development of Smart Manufacturing

The Era of Digital Transformation

Taiwan is a major foundry country for 3C products in the world. In addition to having sufficient manufacturing knowledge and technology, manufacturers are also actively embracing digital transformation under the trend of Industry 4.0 and factory intelligence, introducing emerging technologies to accelerate production capacity and increase international competitiveness. However, the transformation of factory intelligent manufacturing does not mean success by introducing AI or IoT solutions. To build a suitable and applicable intelligent manufacturing system, in addition to hardware and software, whether it has practical experience in solution introduction is the key to success.

Taiwan's manufacturing industry is facing changes in digital transformation. How to accelerate the implementation of smart manufacturing and promote large-scale applications will be a major challenge. The general manager of IBM Taiwan said that due to the lack of overall goals or long-term vision, many smart manufacturing projects are facing the dilemma of ineffectiveness or stagnant progress, and it is difficult to expand deployment to cross-plant or cross-field applications. After the manufacturing industry has defined its core competitiveness, it wants to integrate new technologies, but also finds that companies cannot rely on their efforts to implement the goal of smart manufacturing. IBM pointed out: "In a fast-competitive world, it is no longer feasible to go it alone. We must create and cooperate with our partners!" To get rid of fragmented and partial investment in the manufacturing industry, it is necessary to use a full-scenario approach during the evaluation and proof-of-concept operation stages. From a perspective, to find the most directly beneficial application scenarios can it have the scalability that can quickly expand the scope of applications, which is helpful to the digital transformation of enterprises.

Therefore, Taiwan IBM has joined hands with industry partners to create a complete ecosystem of smart manufacturing, integrating operating technology (OT), information technology (IT) and AI, and working together to provide complete solutions and solutions from OT, IT and AI to enterprise application systems and hybrid clouds. Professional services enable smart manufacturing to be truly implemented as application scenarios, creating achievable investment benefits, and a scalable operation structure. Accuracy, yield, and utilization rate are where the competitiveness of the manufacturing industry lies. It covers the four major elements of the production line including personnel, machines, materials, and processes. Connecting OT and IT will be an indispensable key and a prerequisite for the implementation of AI in manufacturing. The core proposition of an enterprise is how to improve quality, reduce costs, and create maximum profits. The biggest challenge for companies in the next 10 years is people. How to reduce the risk of human error and make personnel operations more efficient will be the key. Therefore, it is imperative to import AI. The structure of OT must be solved first, and then it will make sense to send data to IT! Smart manufacturing can't just be a single point application. It must integrate OT and IT. The key is the "five Rs", that is, making the right decisions and taking the right actions with the right data, the right time, the right location.

Manufacturers start thinking about smart factory construction from the end. For example, a production line has several processes. Can the quality be judged when each process is completed? Are key machines operating normally 24 hours a day and properly utilized? Is it possible to optimize the workflow of employees? If you want to automate operations, you must think about how data is calculated on edge devices and make decisions directly. There are four levels to achieve smart manufacturing. The first is the machine level. If you want good and correct data, you must start with machine design to obtain effective data, present the state of the machine through digital methods, and design Parts, devices, and equipment can be reused, increasing the utilization rate of the machine, and reducing the cost of machine updating and upgrading intelligence in the face of future changes. The second is the production line level. In the face of a small number of diverse product changes, it is necessary to make good use of flexible construction and dynamic reorganization of modular simulation technology to reduce the production cost of flexible manufacturing. The third is at the factory level. Faced with market demand, it uses smart planning and execution system scheduling, understands the data and the relationship between the overall system, and allows intelligence to be injected into the factory to develop smart decisions that support each stage; to achieve increased production capacity and Process optimization. The fourth is the enterprise level. In the process of developing smart manufacturing, enterprises of any size need to have a platform that supports improvement and can continue to evolve and optimize and continue to bring value to the enterprise with a flexible structure and sustainable competitiveness. Finally, the key to success is to use the four levels of Manufacturing on Demand, supplemented by integrated ecosystem collaboration, to further effectively achieve the goal of continuous transformation of smart manufacturing.

IT and OT Convergence Technology

It is extremely difficult to integrate OT and IT because OT does not have a consistent standard. Therefore, factories should think from the concept of Data Fabric, build a data structure platform before production, and how to make different models from the interface of data integration. The yield rate is maximized. In production, we must make good use of hybrid cloud AI applications and think about the efficiency of AI from the perspective of data. After the integration of IT and OT, use the optimized IT architecture of different production lines to find a model suitable for AI to improve the efficiency of the production line. IBM has many AI training models used by international companies that can be directly introduced into the manufacturing industry. In the industry's time-rush competition, the manufacturing industry can quickly find a suitable AI architecture.

The next generation of manufacturing needs to use cloud-based SaaS and containerization to provide different services at the right time. The key is how to design its data structure. The data structure allows factories to face different challenges when developing visual dashboards and developing DevOps in the future. For digital transformation, companies must first clearly define their core competitiveness and core values. Don't use technology for the sake of technology. They must set return on investment and set goals and key results (OKR) with each employee. As an aggregator of Internet of Things solutions (Aggregator), the World Peace Group can assist customers in quickly matching solutions that can be deployed immediately, providing multiple options without being restricted by a single brand, and assisting customers in introducing the most cost-effective solutions. Reduce the time and cost required for enterprise trial and error. And cooperate with IBM to develop the IoT ecosystem, jointly promote the establishment of application standards, and shorten the time for the industry to market products. IBM builds a smart manufacturing ecosystem and works with strategic partners to solve the challenges of equipment networking and data extraction at the IoT connection layer in the manufacturing industry, as well as edge application scenarios, helping customers break through the technical bottleneck of converting OT data into IT data. After data extraction, AI data application scenarios and AI platforms will be further created, and the subsequent three stages of smart manufacturing competitiveness including dynamic simulation, smart factory, and dynamic customization will be gradually implemented to accelerate the advancement of Industry 4.0 and specifically realize the benefits of smart manufacturing.

Stimulate factory transformation, internal and external reasons

In the past few years, the industrial environment of the manufacturing industry has undergone substantial changes, and these changes have brought severe challenges to the electronics assembly industry. The external environment, due to the Sino-US trade war, forced the manufacturing industry to change its production strategy, and successively began to adjust the production model concentrated on the mainland manufacturing base to be scattered around the world. However, setting up factories in different countries will face different geographical, cultural, and construction challenges. Not only can the existing production model not be fully replicated, but it may also delay the expansion of the factory, resulting in reduced production capacity.

The challenges within the industry come from manpower. Taiwan’s population continues to grow negatively, coupled with the fact that manufacturing is not a priority employment choice for young people. These two factors make Taiwan manufacturing industry under-worked. Besides, the gap in the quality of operators is also the main reason for the inefficiency of production lines. Especially in the electronic assembly industry that requires multiple processes and high precision.

To solve the two major challenges internally and externally, the manufacturing industry inevitably needs to introduce an automated production system. Through the standardized production mode of automated equipment, the production line can operate smoothly and the product quality tends to be consistent, thereby solving the problem of human variation. However, for the electronic assembly industry, the structure of electronic products is complex, and the unavoidable production line has many processes that must be completed manually. Therefore, it is difficult to introduce an unmanned factory solution to a fully automated production line. Is the most appropriate way of implementation.

3 key points of digital transformation

The absence of 100% automation does not mean that the electronics assembly industry cannot be transformed intelligently. In consideration of competitiveness, the demand for smart manufacturing in the electronics assembly industry is becoming stronger. The reason is that while the manufacturing industry is expanding and expanding, only intelligence can accurately manage production lines. The digital system can respond more quickly to the changing external environment. For example, after the pneumonia epidemic, many factories will gradually resume work. The factory can shorten the resumption time and quickly restore production through remote monitoring or intelligent systems for production mode adjustment. Also because of the extensive use of smart devices, the dependence on labor is greatly reduced and the impact is reduced.

Three key points need special attention in the construction of related intelligent manufacturing systems. The first is the setting of the system's return on investment, the second is the integration of the two systems of OT and IT, and the third is the control of the system's online schedule. Among them, the most difficult and time-cost investment for customers is the system integration of OT and IT.

The barrier between IT and OT is not only the technical level but also the organizational structure. The planning blueprint proposed by IBM must first communicate with senior management, define key performance indicators (KPI) and return on investment (ROI), and then ask colleagues to start implementation, otherwise, it will only be a single point of breakthrough or innovation. Cannot bring higher value. As for the implementation, it can rely on aggregators to integrate IT and OT technologies to create ready-to-use application solutions for enterprises, using virtualization, security protection, artificial intelligence and other existing IT field-related technology deployment architectures. The gears moving towards digitization must begin to roll. The overall solution of the industry can shorten the time of trial and error, and then accumulate big data, explore the potential of data, convert it into information that can assist decision-making, gradually accumulate into knowledge, and finally evolve into wisdom, Take the initiative to make actionable decisions.

Published by Jul 30, 2020 Source :buzzorange, Source :topic

Further reading

You might also be interested in ...

Headline
Trend
Grinding Robots and Human Machine Collaboration
The integration of robotics into grinding processes can greatly transform traditional manufacturing into dynamic environments where human workers and robots collaborate seamlessly. While robotics offers precision, consistency, and efficiency, skilled operators are essential for the efficient operation of advanced grinding machines. Training programs are important to provide hands-on education, certification, and expertise in setup, operation, and troubleshooting for optimal performance.
Headline
Trend
The Role of Artificial Intelligence in Autonomous Vehicles
Utilizing machine learning and neural networks, artificial intelligence (AI) plays a crucial role in enabling the autonomous operation of self-driving cars. These vehicles leverage a combination of sensors, cameras, radar, and AI to navigate between destinations without the need for human intervention. For a car to be considered fully autonomous, it should demonstrate the capability to independently navigate predetermined routes without human input, even on roads that have not been specifically modified for autonomous vehicle use.
Headline
Trend
Worldwide Bicycle and Electric Bicycle Market Overview
The global increase in environmental consciousness has resulted in a shift for bicycles from primarily sporting and recreational roles to becoming popular modes of commuting. Notably, the rising adoption of electric bicycles is driven by factors such as an aging population, contributing to a significant upsurge in the global production of electric bicycles in recent years.
Headline
Trend
Can 3D Printing Be Applied in the Die and Mold Industry?
As the utilization of 3D printing expands across the broader spectrum of industrial manufacturing, the significance of this technology extends beyond its role as a rapid prototyping tool. This article provides an overview of the applications of 3D printing in the fabrication of molds and dies for processes such as injection molding and die casting.
Headline
Trend
Tooling 4.0: Bridging Industry 4.0 with Mold Manufacturing for the Future
Are you familiar with the latest terminology related to Tooling 4.0? In this article, we'll offer an overview and examples that can help manufacturers understand and align with this evolving concept. Tooling 4.0 revolves around leveraging technology to transform 'inefficient' products into 'intelligent' ones.
Headline
Trend
Industry 4.0 Propels the Global Industrial Market Towards Automation
In the present day, conventional industries are blending Internet of Things technology to drive the evolution of Industry 4.0 and the advancement of smart manufacturing.
Headline
Trend
Exploring the Concept of Advanced Manufacturing
Advanced manufacturing is the use of innovative technologies to improve products or production processes. Related technologies are called "advanced", "innovative" or "frontier". Advanced manufacturing technology is gradually maturing, integrating innovative technology into products and manufacturing processes to enhance competitiveness and increase value.
Headline
Trend
Restructuring the Global Industrial Supply Chain
Due to the outbreak of COVID-19 and its rapid global spread, the global auto parts, semiconductor, and electronics industries have been exposed to highly uncertain risks. Global supply chain logistics is an issue that everyone has had to reexamine.
Headline
Trend
Cement Industry's Initiative to Achieve Net Zero Carbon Emissions
With technological progress and industrial restructuring, the cement industry is actively introducing a circular economy and has become an international pioneer in net-zero carbon emissions through alternative fuels, alternative raw materials, waste heat power generation, green power development, and carbon capture technologies.
Headline
Trend
The Current State and Future Trends of the Biotechnology Pharmaceutical Sector
The growth of the overall global biotech pharmaceutical market is slowing down. Europe and the United States have entered a mature period, and global development in the overall biotech pharmaceutical industry market has slowed down in recent years.
Headline
Trend
Could Low-Carbon Production Be the Answer to Global Climate Change?
Countries are actively developing heavy industries, manufacturing, and infrastructure to drive market growth, but they often pay environmental costs accordingly. Approximately 70% of global greenhouse gas emissions come from infrastructure construction and operations, such as power plants, buildings, and transportation. What will be the effect of promoting society's emphasis on low-carbon manufacturing?
Headline
Trend
Smart Manufacturing: Robotic Arm Vision Now and Tomorrow
The world has entered the era of Industry 4.0. robots assist human manufacturing, emphasizing the use of "human-machine collaboration" to move toward smart production. In recent years, the population aging problem faced by developed countries has caused the production costs of industry and manufacturing to increase year by year. Enterprises have deployed automation equipment to improve production efficiency. Various industries have also undergone tremendous changes in this intelligent wave.
Agree