What is Hyperautomation?
Knowledge

What is Hyperautomation?

Hyperautomation is the use of the power of multiple technologies to achieve end-to-end automation. Hyperautomation is the process of continuously integrating automation into an organization's business processes, combining advanced technologies such as robotic process automation (RPA), artificial intelligence, and machine learning to enhance the results of human work. Not only does it automate key processes, but it also builds an automation ecosystem that finds more processes that can be automated without human intervention.
Published: Sep 07, 2022
What is Hyperautomation?

Hyperautomation is an extension of traditional business process automation that goes beyond the confines of a single process. By combining AI tools with RPA, hyperautomation can automate nearly all repetitive tasks for business users. Even take automation to the next level and automate it: dynamically explore business processes and build bots to automate them. Hyperautomation is one of Gartner's top 10 strategic technologies of the year trends. With a range of tools such as Robotic Process Automation (RPA), Machine Learning (ML), Artificial Intelligence (AI), and more that work in unison to automate complex business processes (including where subject matter experts were once required), hyperautomation is a reality. A means of true digital transformation.

How Does Hyperautomation Work?

According to Gartner, RPA is the core technology for hyperautomation as AI and ML are more advanced. The combination of RPA and AI technologies provides the power and flexibility to automate unprecedented: recordless processes that rely on unstructured data input.

What Advantages Can Hyperautomation Bring?

Speed up complex work

By automating more and more complex jobs that rely on the input of human knowledge, hyperautomation acts as a highway, enabling everyone to participate in business transformation.

Deploy digital staff

RPA uses smart technology to make functions more sophisticated, thereby creating a smart digital workforce that can take on repetitive tasks and improve employee performance. These digital workers are hyperautomated agents of change, able to connect to a variety of business applications, operate with structured and unstructured data, analyze data and make decisions, and explore processes and new automation opportunities.

The Power of Artificial Intelligence (AI)

Artificial intelligence is what differentiates the digital workforce from standard automation approaches, making RPA + AI an essential element of hyperautomation. Hyper-automation technology can discover and automate previously inaccessible data and processes, thereby providing another unique advantage: the creation of a Digital Doppelganger (DTO) of the organization. How does this help? DTOs bring transparency to previously unseen interactions between processes, functions and KPIs. Imagine using intelligence to respond quickly and identify new opportunities while witnessing business value creation happening (or not).

What is the Difference between Hyperautomation and Intelligent Process Automation?

Hyperautomation includes increasing the automation of business processes through the introduction of artificial intelligence (AI), machine learning (ML), and robotic process automation (RPA). Almost all repetitive tasks can be automated, and it is even possible to figure out which processes can be automated and build bots to perform them.

Hyperautomation is an advanced technological infrastructure for extending automation capabilities in an organization. It will further automate already automated processes, enabling business operations to exceed individual contributions.

These automation technologies include robotic process automation (RPA), artificial intelligence (AI), machine learning, process mapping, and other tools that identify time-consuming business processes and establish ways to automate them.

On the other hand, intelligent automation also includes tools such as optical character recognition (OCR), artificial intelligence and machine learning algorithms to simulate human behavior and intelligence. This type of automation allows businesses to handle complex actions without requiring manual input, analysis, or decision-making.

While it's easy to confuse smart automation and hyperautomation, it's more accurate to think of the former as a subcategory of the latter. Smarter automation is just one aspect of hyperautomation technology that includes RPA, natural language processing (NLP), digital process automation, decision management structures, and intelligent business process management (IBPMS) infrastructure.

Why Should Organizations Embrace Hyperautomation?

Hyperautomation is one of the hottest strategic technology trends of 2020, and while automation is a familiar term, hyperautomation is still a new concept for many organizations.

Building a hyper-automated system is a challenging task, but it has many benefits, such as automating repetitive tasks to increase labor efficiency. Hyperautomation can help employees focus on more interesting and challenging tasks and reduce the chance of human error and decision bias.

Competitive industries such as finance are already adopting hyperautomation strategies, and organizations that are using remote process automation are only a few steps away from hyperautomation, so they should work on integrating AI and machine learning into their automation frameworks, to reap the benefits of hyperautomation.

Published by Sep 07, 2022 Source :Automation Anywhere, Source :TIBCO

Further reading

You might also be interested in ...

Headline
Knowledge
Understanding the Logistics and Transportation Sector
As the number of e-commerce transactions continues to surge, there is a parallel increase in the demand for logistics services. Amidst the ongoing transformation and upgrade of the industry, the integration of smart technology has emerged as a pivotal factor in driving its development.
Headline
Knowledge
Understanding Mechanism Design and Its Practical Applications
Creating an effective mechanism design entails thoughtful consideration of factors such as materials, specifications, precision, manufacturing processes, and functionality. Moreover, it must be cost-effective to ensure the development of a successful mechanism design.
Headline
Knowledge
Understanding the Granulation Process
Plastic granulation technology plays a pivotal role in the manufacturing of plastic products and the recycling of resources. It is employed to produce a diverse range of plastic products or raw materials, offering both environmental and economic advantages.
Headline
Knowledge
What Constitutes Contemporary Architectural Frameworks for Robotic Computing?
The behavior of robots is frequently modeled as a computational graph, wherein data flows from sensors to computational technology, extending to actuators and then looping back. To enhance performance capabilities, robotic computing platforms need to adeptly map these graph-like structures to CPUs and specialized hardware, such as FPGAs and GPUs.
Headline
Knowledge
How Does the Electroplating Process Work for ABS Plastic?
Over the past few years, plastic electroplating has gained widespread popularity, particularly in the decorative electroplating of plastic components. Among the various types of plastic utilized in electroplating, ABS plastic stands out as the most extensively employed.
Headline
Knowledge
What Are the Fundamentals and Benefits of Choosing between Liquid and Powder Coating?
Metal fabricators aiming to venture into finishing processes should familiarize themselves with two prevalent options—liquid and powder coating—along with the prerequisites necessary for a company seeking to employ either or both.
Headline
Knowledge
Anticipating the Emerging Trends in the Global Laser Industry
In light of the evolving global industry demands, the laser industry and technology are shifting their focus towards meeting the requirements of 5G semiconductors and smart vehicle processes. While Taiwan's laser industry has a well-established foundation built over the years, sustaining international competitiveness necessitates a proactive advancement in independent laser technology.
Headline
Knowledge
What is the Purpose of Surface Treatment for Metals?
Defects are bound to arise during the reprocessing of mechanical equipment or parts related to metal. As a result, the final item's surface treatment process plays a crucial role, serving the dual purpose of enhancing aesthetics and providing protection. This process not only improves the performance of metal parts but also helps prevent rust.
Headline
Knowledge
Selecting a Hydraulic Press and Understanding its Manufacturing Procedure
Hydraulic presses find applications in compaction, assembly, pressing, forming, embossing, and stretching. They play a crucial role in compaction within the cosmetics sector, assembly in the automotive industry, molding of electronic products, and stamping in the home appliance industry.
Headline
Knowledge
Introduction to RFID Tags: The Significance of RFID in Modern Retail Supply Chains
There are two types of RFID systems: passive and active. For those unfamiliar with RFID, you may be curious about the distinctions between these types and which one suits your application best. In the following, we offer a brief explanation.
Headline
Knowledge
Anticipating the Emerging Trends in the Global Laser Industry
In light of the evolving global industrial demands, the laser industry and technology are shifting towards meeting the requirements of 5G semiconductors and advanced processes for smart vehicles. While Taiwan's laser industry has made substantial progress over the years, maintaining alignment with international advancements necessitates a proactive push in independent laser technology.
Headline
Knowledge
Exploring Sheet Metal: Defining Sheet Metal and its Various Applications, with a Focus on Laser Applications
The term originates from English, known as plate metal. Typically, certain metal sheets undergo plastic deformation either manually or through die-stamping to attain the desired shape and size. These sheets can then undergo additional shaping through welding or a limited amount of mechanical processing to create more intricate components.
Agree