Machine Learning Introduction: What Is Machine Learning? Machine Learning Examples and Applications
Knowledge

Machine Learning Introduction: What Is Machine Learning? Machine Learning Examples and Applications

Interest in learning machine learning has skyrocketed in the years since Harvard Business Review article named ‘Data Scientist’ the ‘Sexiest job of the 21st century’. But if you’re just starting out in machine learning, it can be a bit difficult to break into.
Published: Aug 05, 2020
Machine Learning Introduction: What Is Machine Learning? Machine Learning Examples and Applications

What Is Machine Learning

Machine learning algorithms are programs that can learn from data and improve from experience, without human intervention.

Machine learning (ML) is the study of computer algorithms that improve automatically through experience. It is seen as a subset of artificial intelligence. Machine learning algorithms build a mathematical model based on sample data, known as "training data", in order to make predictions or decisions without being explicitly programmed to do so. Machine learning algorithms are used in a wide variety of applications, such as email filtering and computer vision, where it is difficult or infeasible to develop conventional algorithms to perform the needed tasks.

Machine learning is closely related to computational statistics, which focuses on making predictions using computers. The study of mathematical optimization delivers methods, theory, and application domains to the field of machine learning. Data mining is a related field of study, focusing on exploratory data analysis through unsupervised learning. In its application across business problems, machine learning is also referred to as predictive analytics.

Machine Learning Applications

  1. Virtual Personal Assistants
  2. Siri, Alexa, Google Now are some of the popular examples of virtual personal assistants. As the name suggests, they assist in finding information, when asked over voice. All you need to do is activate them and ask “What is my schedule for today?”, “What are the flights from Germany to London”, or similar questions. For answering, your personal assistant looks out for the information, recalls your related queries, or send a command to other resources (like phone apps) to collect info. You can even instruct assistants for certain tasks like “Set an alarm for 6 AM next morning”, “Remind me to visit Visa Office day after tomorrow”.

    Machine learning is an important part of these personal assistants as they collect and refine the information on the basis of your previous involvement with them. Later, this set of data is utilized to render results that are tailored to your preferences. Virtual Assistants are integrated to a variety of platforms.

  3. Predictions while Commuting
  4. Traffic Predictions: We all have been using GPS navigation services. While we do that, our current locations and velocities are being saved at a central server for managing traffic. This data is then used to build a map of current traffic. While this helps in preventing the traffic and does congestion analysis, the underlying problem is that there are less number of cars that are equipped with GPS. Machine learning in such scenarios helps to estimate the regions where congestion can be found on the basis of daily experiences.

    Online Transportation Networks: When booking a cab, the app estimates the price of the ride. When sharing these services, how do they minimize the detours? The answer is machine learning. Jeff Schneider, the engineering lead at Uber ATC reveals in a an interview that they use ML to define price surge hours by predicting the rider demand. In the entire cycle of the services, ML is playing a major role.

  5. Videos Surveillance
  6. Imagine a single person monitoring multiple video cameras! Certainly, a difficult job to do and boring as well. This is why the idea of training computers to do this job makes sense.

    The video surveillance system nowadays are powered by AI that makes it possible to detect crime before they happen. They track unusual behaviour of people like standing motionless for a long time, stumbling, or napping on benches etc. The system can thus give an alert to human attendants, which can ultimately help to avoid mishaps. And when such activities are reported and counted to be true, they help to improve the surveillance services. This happens with machine learning doing its job at the backend.

  7. Social Media Services
  8. using, and loving in your social media accounts, without realizing that these wonderful features are nothing but the applications of ML.

    People You May Know: Machine learning works on a simple concept: understanding with experiences. Facebook continuously notices the friends that you connect with, the profiles that you visit very often, your interests, workplace, or a group that you share with someone etc. On the basis of continuous learning, a list of Facebook users are suggested that you can become friends with.

    Face Recognition: You upload a picture of you with a friend and Facebook instantly recognizes that friend. Facebook checks the poses and projections in the picture, notice the unique features, and then match them with the people in your friend list. The entire process at the backend is complicated and takes care of the precision factor but seems to be a simple application of ML at the front end.

  9. Email Spam and Malware Filtering
  10. There are a number of spam filtering approaches that email clients use. To ascertain that these spam filters are continuously updated, they are powered by machine learning. When rule-based spam filtering is done, it fails to track the latest tricks adopted by spammers. Multi Layer Perceptron, C 4.5 Decision Tree Induction are some of the spam filtering techniques that are powered by ML.

    Over 325, 000 malwares are detected everyday and each piece of code is 90–98% similar to its previous versions. The system security programs that are powered by machine learning understand the coding pattern. Therefore, they detects new malware with 2–10% variation easily and offer protection against them.

  11. Online Customer Support
  12. A number of websites nowadays offer the option to chat with customer support representative while they are navigating within the site. However, not every website has a live executive to answer your queries. In most of the cases, you talk to a chatbot. These bots tend to extract information from the website and present it to the customers. Meanwhile, the chatbots advances with time. They tend to understand the user queries better and serve them with better answers, which is possible due to its machine learning algorithms.

  13. Search Engine Result Refining
  14. Google and other search engines use machine learning to improve the search results for you. Every time you execute a search, the algorithms at the backend keep a watch at how you respond to the results. If you open the top results and stay on the web page for long, the search engine assumes that the the results it displayed were in accordance to the query. Similarly, if you reach the second or third page of the search results but do not open any of the results, the search engine estimates that the results served did not match requirement. This way, the algorithms working at the backend improve the search results.

  15. Product Recommendations
  16. You shopped for a product online few days back and then you keep receiving emails for shopping suggestions. If not this, then you might have noticed that the shopping website or the app recommends you some items that somehow matches with your taste. Certainly, this refines the shopping experience but did you know that it’s machine learning doing the magic for you? On the basis of your behaviour with the website/app, past purchases, items liked or added to cart, brand preferences etc., the product recommendations are made.

  17. Online Fraud Detection
  18. Machine learning is proving its potential to make cyberspace a secure place and tracking monetary frauds online is one of its examples. For example: Paypal is using ML for protection against money laundering. The company uses a set of tools that helps them to compare millions of transactions taking place and distinguish between legitimate or illegitimate transactions taking place between the buyers and sellers.

Published by Aug 05, 2020 Source :dataquest Source :edureka Source :medium Source :wikipedia

Further reading

You might also be interested in ...

Headline
Knowledge
Essential for Precision Machining: A Complete Guide to Tungsten Carbide Center Drills
In modern manufacturing, precision is the core standard by which product quality and performance are measured. From aerospace components to medical devices, even a minor deviation can lead to serious consequences. When it comes to precision drilling, a critical challenge is ensuring that a drill bit can be accurately positioned at the start of a cut while maintaining stability during high-intensity operations. The tungsten carbide center drill is the professional tool engineered specifically to solve this problem.
Headline
Knowledge
From Cavitation Effect to Industrial Applications: The Secrets of Ultrasonic Cleaning
When your glasses, tableware, or electronic components are stained with stubborn dirt, what can you do? Traditional methods often require vigorous scrubbing or even harsh chemical solvents, which are not environmentally friendly and may scratch the item. At this moment, ultrasonic cleaning acts like an “invisible little helper”, reaching deep into grooves and gaps to gently yet effectively remove contaminants.
Headline
Knowledge
The “Spark Magician” of Metalworking
Electrical Discharge Machining (EDM) is a non-traditional machining process that removes metal through electrical sparks. Unlike conventional methods, it is not limited by material hardness and can precisely create deep cavities, micro-holes, and complex structures in hardened steel, tungsten carbide, or superalloys. The three main types of EDM include wire cutting, die-sinking, and hole drilling, which are widely applied in mold making, aerospace, automotive, and medical industries. Although EDM has a slower processing speed, works only with conductive materials, and requires consideration of electrode wear and surface treatment, its advantages in high precision, zero cutting force, and superior surface finish make it an indispensable technology in precision manufacturing. Moreover, it continues to evolve in line with the trend toward smart manufacturing.
Headline
Knowledge
Press Brake vs Shearing Machine: Functional and Technical Comparison of Industrial Processing Equipment
Press Brake and Shearing Machine are two essential types of equipment in the field of machine tools, widely used in the processing of metal, wood, and other materials. They play critical roles in manufacturing, enabling efficient and precise material forming and cutting. This article introduces the definitions, functions, technical features, and applications of folding and cutting machines, offering neutral and practical knowledge sharing.
Headline
Knowledge
Master Chuck Types & Selection: The Essential Guide for Machinists
In the world of precision manufacturing, every minute detail can determine the quality of the final product. The chuck is a critical yet often overlooked component—it's not just a tool for holding a workpiece, but the very heart of ensuring machining accuracy, efficiency, and safety. This article will take you on a deep dive into the diverse universe of chucks, covering their operating principles, design philosophies, common types, and how to select the right jaws and chucks for different needs. Whether you're new to the industry or a seasoned engineer, this guide will unlock the intricate secrets of chucks, helping you master every detail on your path to manufacturing success.
Headline
Knowledge
An Overview of Electrical Discharge Machining (EDM)
Electrical Discharge Machining (EDM) is a non-traditional manufacturing process that utilizes electrical sparks to remove material from a workpiece. Unlike conventional machining methods such as milling or turning, which rely on physical contact between a tool and the material, EDM operates without direct contact, making it ideal for processing hard or brittle materials that are difficult to machine otherwise. The process involves generating a series of rapid electrical discharges between an electrode and the workpiece, submerged in a dielectric fluid, which erodes the material through thermal energy. This technique has revolutionized precision manufacturing by enabling the creation of complex geometries with high accuracy.
Headline
Knowledge
Applications of Machine Tools in the Aerospace Industry
The aerospace industry is a highly specialized and technology-driven sector, encompassing the design, manufacturing, and maintenance of aircraft, spacecraft, satellites, and related equipment. Machine tools play a critical role in this field, enabling the precision machining of complex metal and composite material components. These tools enhance production efficiency while ensuring the accuracy and reliability required to meet the stringent safety and performance standards of aerospace. This document outlines the key applications, technologies, benefits, and future trends of machine tools in the aerospace industry.
Headline
Knowledge
Smart Healthcare Uncovered:How AI Is Transforming Clinical Practice?
With the rapid rise of artificial intelligence (AI), the healthcare industry is undergoing a disruptive transformation. AI is significantly improving diagnostic accuracy and treatment efficiency while profoundly redefining healthcare professionals’ roles and patient experiences. A comprehensive understanding of the core technologies and clinical applications behind this transformation is essential for grasping the future trends and strategic directions of smart healthcare.
Headline
Knowledge
Principle and Applications of Laser Cutting Machines
As the global manufacturing industry advances toward higher precision and efficiency, laser cutting technology has become a key enabler of industrial upgrading. Compared with traditional shearing, stamping, and mechanical cutting, laser cutting offers non-contact processing, higher accuracy, and greater flexibility. It significantly improves productivity while reducing secondary finishing. Today, it is widely adopted in metalworking and increasingly applied in electronics, aerospace, medical, and architectural design industries.
Headline
Knowledge
Why Are High-Quality Cutting Fluids Critical for Machining Quality?
In CNC and metalworking, cutting fluid is no longer just a coolant—it plays a critical role by providing lubrication, chip removal, and corrosion protection. With the right formulation and concentration, it can reduce cutting heat, minimize friction, extend tool life, and maintain workpiece accuracy. High-pressure cooling further enhances efficiency in deep-hole and high-speed machining. The pairing of tool material with the proper cutting fluid is equally crucial; correct selection and maintenance ensure process stability, prolong equipment life, and improve the overall work environment. Cutting fluid has become an indispensable investment in modern precision manufacturing.
Headline
Knowledge
Introduction to Emerging Printing Technologies: Opening New Horizons for the Future of Printing
With rapid technological progress and increasingly diverse market demands, traditional printing techniques are no longer sufficient to meet modern industry’s requirements for precision, efficiency, and sustainability. As a result, emerging technologies such as UV printing, 3D printing, and Nanoimprint Lithography (NIL) have risen to prominence, offering solutions with higher precision, broader applications, and lower production costs. These innovations have already demonstrated value across packaging, advertising, healthcare, semiconductors, and construction. In the following sections, we will explore their technical features and real-world applications, highlighting the advantages and future potential of these cutting-edge printing technologies.
Headline
Knowledge
The Core Standard for Life-Critical Systems: A Complete Guide to IPC Classification
In high-risk fields such as medical, aerospace, and automotive, IPC classifications determine PCB reliability and safety. Class 3 represents the highest standard, requiring zero tolerance for defects, complete via filling, adequate copper annular rings, and rigorous inspections to ensure operation under extreme conditions, while Class 2 suits long-term use in non-critical equipment with minor cosmetic flaws allowed. Class 3’s strict criteria cover component placement, soldering, plating thickness, and environmental testing—adding cost and production time, but far outweighing the risks of failure in life- or safety-critical systems. Thus, defining high-risk equipment as Class 3 during design is essential, making IPC classification a core safeguard rather than an option.
Agree