Machine Learning Introduction: What Is Machine Learning? Machine Learning Examples and Applications
Knowledge

Machine Learning Introduction: What Is Machine Learning? Machine Learning Examples and Applications

Interest in learning machine learning has skyrocketed in the years since Harvard Business Review article named ‘Data Scientist’ the ‘Sexiest job of the 21st century’. But if you’re just starting out in machine learning, it can be a bit difficult to break into.
Published: Aug 05, 2020
Machine Learning Introduction: What Is Machine Learning? Machine Learning Examples and Applications

What Is Machine Learning

Machine learning algorithms are programs that can learn from data and improve from experience, without human intervention.

Machine learning (ML) is the study of computer algorithms that improve automatically through experience. It is seen as a subset of artificial intelligence. Machine learning algorithms build a mathematical model based on sample data, known as "training data", in order to make predictions or decisions without being explicitly programmed to do so. Machine learning algorithms are used in a wide variety of applications, such as email filtering and computer vision, where it is difficult or infeasible to develop conventional algorithms to perform the needed tasks.

Machine learning is closely related to computational statistics, which focuses on making predictions using computers. The study of mathematical optimization delivers methods, theory, and application domains to the field of machine learning. Data mining is a related field of study, focusing on exploratory data analysis through unsupervised learning. In its application across business problems, machine learning is also referred to as predictive analytics.

Machine Learning Applications

  1. Virtual Personal Assistants
  2. Siri, Alexa, Google Now are some of the popular examples of virtual personal assistants. As the name suggests, they assist in finding information, when asked over voice. All you need to do is activate them and ask “What is my schedule for today?”, “What are the flights from Germany to London”, or similar questions. For answering, your personal assistant looks out for the information, recalls your related queries, or send a command to other resources (like phone apps) to collect info. You can even instruct assistants for certain tasks like “Set an alarm for 6 AM next morning”, “Remind me to visit Visa Office day after tomorrow”.

    Machine learning is an important part of these personal assistants as they collect and refine the information on the basis of your previous involvement with them. Later, this set of data is utilized to render results that are tailored to your preferences. Virtual Assistants are integrated to a variety of platforms.

  3. Predictions while Commuting
  4. Traffic Predictions: We all have been using GPS navigation services. While we do that, our current locations and velocities are being saved at a central server for managing traffic. This data is then used to build a map of current traffic. While this helps in preventing the traffic and does congestion analysis, the underlying problem is that there are less number of cars that are equipped with GPS. Machine learning in such scenarios helps to estimate the regions where congestion can be found on the basis of daily experiences.

    Online Transportation Networks: When booking a cab, the app estimates the price of the ride. When sharing these services, how do they minimize the detours? The answer is machine learning. Jeff Schneider, the engineering lead at Uber ATC reveals in a an interview that they use ML to define price surge hours by predicting the rider demand. In the entire cycle of the services, ML is playing a major role.

  5. Videos Surveillance
  6. Imagine a single person monitoring multiple video cameras! Certainly, a difficult job to do and boring as well. This is why the idea of training computers to do this job makes sense.

    The video surveillance system nowadays are powered by AI that makes it possible to detect crime before they happen. They track unusual behaviour of people like standing motionless for a long time, stumbling, or napping on benches etc. The system can thus give an alert to human attendants, which can ultimately help to avoid mishaps. And when such activities are reported and counted to be true, they help to improve the surveillance services. This happens with machine learning doing its job at the backend.

  7. Social Media Services
  8. using, and loving in your social media accounts, without realizing that these wonderful features are nothing but the applications of ML.

    People You May Know: Machine learning works on a simple concept: understanding with experiences. Facebook continuously notices the friends that you connect with, the profiles that you visit very often, your interests, workplace, or a group that you share with someone etc. On the basis of continuous learning, a list of Facebook users are suggested that you can become friends with.

    Face Recognition: You upload a picture of you with a friend and Facebook instantly recognizes that friend. Facebook checks the poses and projections in the picture, notice the unique features, and then match them with the people in your friend list. The entire process at the backend is complicated and takes care of the precision factor but seems to be a simple application of ML at the front end.

  9. Email Spam and Malware Filtering
  10. There are a number of spam filtering approaches that email clients use. To ascertain that these spam filters are continuously updated, they are powered by machine learning. When rule-based spam filtering is done, it fails to track the latest tricks adopted by spammers. Multi Layer Perceptron, C 4.5 Decision Tree Induction are some of the spam filtering techniques that are powered by ML.

    Over 325, 000 malwares are detected everyday and each piece of code is 90–98% similar to its previous versions. The system security programs that are powered by machine learning understand the coding pattern. Therefore, they detects new malware with 2–10% variation easily and offer protection against them.

  11. Online Customer Support
  12. A number of websites nowadays offer the option to chat with customer support representative while they are navigating within the site. However, not every website has a live executive to answer your queries. In most of the cases, you talk to a chatbot. These bots tend to extract information from the website and present it to the customers. Meanwhile, the chatbots advances with time. They tend to understand the user queries better and serve them with better answers, which is possible due to its machine learning algorithms.

  13. Search Engine Result Refining
  14. Google and other search engines use machine learning to improve the search results for you. Every time you execute a search, the algorithms at the backend keep a watch at how you respond to the results. If you open the top results and stay on the web page for long, the search engine assumes that the the results it displayed were in accordance to the query. Similarly, if you reach the second or third page of the search results but do not open any of the results, the search engine estimates that the results served did not match requirement. This way, the algorithms working at the backend improve the search results.

  15. Product Recommendations
  16. You shopped for a product online few days back and then you keep receiving emails for shopping suggestions. If not this, then you might have noticed that the shopping website or the app recommends you some items that somehow matches with your taste. Certainly, this refines the shopping experience but did you know that it’s machine learning doing the magic for you? On the basis of your behaviour with the website/app, past purchases, items liked or added to cart, brand preferences etc., the product recommendations are made.

  17. Online Fraud Detection
  18. Machine learning is proving its potential to make cyberspace a secure place and tracking monetary frauds online is one of its examples. For example: Paypal is using ML for protection against money laundering. The company uses a set of tools that helps them to compare millions of transactions taking place and distinguish between legitimate or illegitimate transactions taking place between the buyers and sellers.

Published: Aug 05, 2020 Source :dataquest Source :edureka Source :medium Source :wikipedia

Further reading

You might also be interested in ...

Headline
Knowledge
What are the Components of Automotive Semiconductors?
MCU has a wide range of terminal applications, including home appliance control, automotive electronics, education and entertainment, medical equipment, etc. Among them, automotive electronics and the Internet of Things will be the main kinetic energy of the MCU industry.
Headline
Knowledge
The Pursuit of Low-Error and High-Precision Machine Precision
To maintain the accuracy of finished products in the manufacturing industry, rapid detection and adjustment of machine tool performance are necessary work.
Headline
Knowledge
Metal Lamination Manufacturing Technology from Subtraction to Addition-3D Intelligent Manufacturing
The global manufacturing industry is moving towards intelligent manufacturing, and Industry 4.0 drives the manufacturing industry towards a trend of high efficiency, low cost, and intelligent and flexible production. The nine technologies of Industry 4.0 include Big Data, Laminated Manufacturing, Cloud Technology, Automation, System Integration, Internet of Things, Cyber Security, Augmented Reality, and Simulation.
Headline
Knowledge
What is Natural Language Processing Technology?
Natural Language Processing (NLP) is a subfield of computer science and artificial intelligence that focuses on how to get computers to process and analyze large amounts of human natural language data. Common NLP challenges are speech recognition, natural language understanding, machine translation, and natural language generation.
Headline
Knowledge
What is NFT?
The NFT market is growing explosively. In January 2021 alone, the transaction volume of NFTs will reach as high as 200 million US dollars, compared with 250 million US dollars in the whole year of 2020.
Headline
Knowledge
What is the composition and working principles of the PHEV braking energy recovery system?
With the development of the electric vehicle market, the braking energy recovery system has received extensive attention, and the driving ability can be improved through the braking energy recovery system.
Headline
Knowledge
High Efficiency and Low NVH Power Motor Technology
When car consumers buy vehicles, in addition to considering the performance of the car, such as power, handling, and safety, the highly-rated NVH performance, which can provide driving and passenger comfort, has become a factor for consumers to buy a car. In the process of vehicle development, all developing car manufacturers need to evaluate the performance of competing models to develop new models with higher performance.
Headline
Knowledge
What is Nanotechnology?
The so-called nanotechnology refers to the measurement, simulation, manipulation, and production of materials less than 100 nanometers.
Headline
Knowledge
What is A Printed Circuit Board (PCB)?
All electronic products must use the Printed Circuit Board (PCB) to fix the integrated circuit (IC) and other electronic components, and all the integrated circuits and electronic components with different functions are connected with thin copper wires to provide a stable working environment so that electronic signals can circulate between different electronic components.
Headline
Knowledge
What Is Flash Memory? What Is the Difference Between a Hard Disk Drive?
From the perspective of capacity, the flash memory type has a smaller capacity than the hard disk type, but the flash memory type has a faster reading speed than the hard disk type, and the flash memory type has a stronger anti-vibration ability. You can choose the appropriate one according to your needs. If you are only listening to songs, it is recommended to buy a flash memory type, which does not require too much capacity. If you want to use it to watch a movie, it is recommended to use a hard disk, otherwise, the movie cannot be saved.
Headline
Knowledge
What Is the Function of Vernier Calipers?
One of the tools a mechanic must use is a caliper. Although not as accurate as a micrometer, the caliper is a convenient and practical tool that can help mechanics quickly measure parts and use the measurement results to evaluate subsequent processing.
Headline
Knowledge
In the Face of the Epidemic, How Does the Telemedicine System Get Ahead of Its Subordinates?
In the face of the spread of the epidemic, people minimize their chances of contacting people when going out, but how should the necessary medical services be solved? The telemedicine consultation will be used to advance subordinates and provide remote medical interviews and consultations that do not require contact.
Agree