Medical Plastics Provide Innovation and Breakthroughs for the Medical Device Industry
Trend

Medical Plastics Provide Innovation and Breakthroughs for the Medical Device Industry

Plastic rubber has long been one of the important raw materials used for medical equipment and pharmaceutical packaging. With the vigorous development of the industry, various high-performance plastics and technologies for medical devices have emerged. In addition to traditional medical plastics, such as PP, PVC, PE, and silicone rubber, which are commonly used in the medical device industry, some high-performance materials have been developed that are important to the medical device industry.
Published: Apr 18, 2022
Medical Plastics Provide Innovation and Breakthroughs for the Medical Device Industry

Market Development of Medical Plastics:

Products made of plastic materials have already penetrated our lives. Humans are accustomed to plastic things, and because of the advancement of technology, plastic materials are more optimized to meet the requirements of temperature, environment, structure, and so on.

In our daily lives, almost 98% of the products we use are made of plastic materials. However, for medical devices the material property requirements are much higher than for daily use items. Instruments and devices used for medical procedures need to be sturdy and reliable in order to ensure safety during use.

Plastic materials have helped to facilitate the development of medical devices and have allowed for many breakthroughs in manufacturing. Compared with other materials, plastic materials are light in weight, low cost, easy to process, elastic and non-ferrous (providing safety for MRI irradiation), and have excellent biocompatibility. These advantages make it easier to develop next-generation implants, disposable single-use devices, packaging technologies, and the like. Global demand for medical polymers has reached nearly 5 million metric tons and is expected to continue to grow and exceed 7 million metric tons.

What are the Development Advantages of Medical Plastics?

  • The costs are low, they can be reused without sterilization, and they are suitable for use in disposable medical devices.
  • Their processing is simple, and because of their plasticity, they can be processed into a variety of useful structures that are difficult to manufacture from metal, glass, or other materials.
  • They are tough and elastic so are not as easily broken as glass.
  • They have good chemical inertness and biological safety.

Characteristics of Research and Development and Selection of Plastic Materials:

The demand for plastic materials is slowly increasing in medical products. In the future, when choosing plastic materials to design medical materials, there are several important things that need to be taken into consideration when designing and selecting medical materials:

  1. The plastic material should be resistant to chemical cleaning agents for enhanced service life in the hospital:
    Even though hospitals do their best to reduce the risk of nosocomial (health-care associated) infection, nosocomial infection is still a high risk and needs to be treated with caution throughout the hospital. To combat nosocomial infections, in addition to using copper metal surface materials, it is common for hospitals to use disinfectants to clean the surfaces of instruments and equipment. But over time, if the plastic is not strong enough, these devices may begin to corrode, crack, discolor, and become structurally brittle, posing a danger.
  2. Plastic materials can replace metal materials and provide similar or even better performance:
    In the design of medical equipment, new medical plastic materials have replaced the metals used in products of the past. Many engineering plastics perform like metals and have the same tensile strength, but are lighter, cheaper, more flexible, and easier to manufacture. Lightweight plastic products, combined with the ergonomic designs of the products, make long surgical procedures easier. Also, plastic injection molding is much cheaper than metal manufacturing.
  3. Cost control, from raw material to process:
    Cost reduction is a concern of manufacturers in all walks of life. Medical device manufacturers around the world, including upstream material suppliers and contract manufacturers, are required to join the ranks of cost reduction. For this reason, some manufacturers use new medical plastic materials and processing technologies to replace the current methods to reduce costs.
  4. Safe materials to address environmental issues and interferences with human health:
    Many groups in society continue to promote environmental protection and human health, prompting medical equipment manufacturers to start paying closer attention to production issues.
    One medical manufacturing challenge is designing products without bisphenol A (BPA). Bisphenol A is one of the components of polycarbonate (PC), a commonly used medical-grade thermoplastic polymer. When polycarbonate degrades, bisphenol A will be precipitated. Its chemical structure is similar to estrogen, and can act as a biological hormone or endocrine disruptor. It may also cause cancer and problems in human development and behavior. Exposure to BPA has therefore been a general concern, as materials with BPA have been used in beverage containers, food packaging, and intravenous injection devices. To ensure the safety of infants and young children, Taiwan has revised the hygiene standards for food utensils and containers and has completely banned the manufacture and sale of baby bottles containing bisphenol A. A safety review report by the FDA and Health Canada concluded that there is no minimum safe dose of BPA.
    The government and relevant safety inspection units are also increasingly concerned about issues of environmental protection, environment, and human safety, and are also promoting relevant policies. Various medical device manufacturers are also developing manufacturing processes that will gradually improve medical plastic applications.
  5. Bioabsorbable materials, used in various implant designs:
    Bioabsorbable polymers have been around for a long time, but they have only been used in medical devices in recent years. These materials will degrade over time and be safely absorbed and excreted by the body. Its new applications are currently in the field of drug delivery (eg: drug-coated stents), bone augmentation and fixation (eg: bone nails), and soft tissue regeneration and replacement (stents).

What are the Benefits of Bioabsorbable Materials?

For bone plates and pins used in orthopedics, if absorbable materials are used to replace the traditional titanium alloys, as the bones heal the materials will slowly dissolve, eliminating the need for subsequent surgery to remove the implants, thus reducing the cost of surgery and risk of infection.

Most bioabsorbable materials are produced using two common polyester materials; polylactic acid (PLA) and polyglycolic acid (PGA). Another new material is polyglycerol sebacate (PGS). PGS can be customized for different applications, such as repair scaffolds for bones, fibers for bio textiles, and coatings on implant surfaces. In addition, PGS does not trigger an immune or inflammatory response in patients.

What are Commonly Used Medical Plastics?

  1. Polyvinyl chloride (PVC):
    PVC is one of the most widely produced plastics in the world. PVC resin is a white or light-yellow powder. Pure PVC is an asymmetric polymer that is hard, and brittle. Different additives can be added to PVC plastic to give it different physical and mechanical properties. Adding varying amounts of plasticizer to PVC resin can make a variety of hard, soft, and transparent products. Hard PVC contains a small amount of plasticizer, has good tensile, flexural, compressive, and impact resistance properties, and can be used alone as a structural material. Soft PVC contains more plasticizers so is more flexible and resistance to cold, and is less brittle, but it has lower hardness and tensile strength.
    About 25% of medical plastic products are PVC. This is mainly due to the low cost of the resin, its wide application range, and its ease of processing. PVC products for medical applications include hemodialysis tubing, breathing masks, oxygen inhalation tubes, etc.
  2. Polyethylene (PE):
    Polyethylene plastic is the most common of all plastics used today. The non-toxic, glossy, waxy particles, have a milky white color and are tasteless and odorless. The low price and good performance of PE has led to it being widely used in industry, agriculture, packaging, and for daily use items such as plastic bags, plastic films, and bottles.
    PE can be formulated with different densities giving it a range of distinctive physical properties. Low-density polyethylene (LDPE) has a highly branched molecular structure giving it a relatively lower molecular weight. It is less dense and has good flexibility, impact resistance, and transparency. LDPE is often used in blown film. High-density polyethylene (HDPE) has fewer branches on its polymer chain structure so has a higher relative molecular mass. It is more dense, harder and stronger than LDPE, and has poor opacity and a higher melting point. It is often used for injection molded parts. Ultra-high-density polyethylene (UHDPE) has high impact resistance, low friction, good stress crack resistance, and good energy absorption properties, making it an ideal material for artificial hip, knee, and shoulder connectors.
  3. Polypropylene (PP):
    Polypropylene is colorless, odorless, and non-toxic. Looks like polyethylene, but is more transparent and lighter than polyethylene. PP is a thermoplastic with excellent properties, with the advantages of small specific gravity, non-toxicity, easy processing, impact resistance, and flex resistance. It has a wide range of applications in daily life, including woven bags, films, turnover boxes, wire shielding materials, toys, car bumpers, fibers, washing machines, etc. Medical PP has high transparency, good barrier properties, and radiation resistance, making it widely used in medical equipment and packaging industries. PP as the main plastic used as a substitute for the widely used PVC.
  4. Polystyrene (PS) and K resin:
    PS is the third-largest plastic variety after polyvinyl chloride and polyethylene. It is used in electrical parts, optical instruments, and cultural and educational supplies. The texture is hard and brittle but it has a high coefficient of thermal expansion, which limits its application in engineering. In recent decades, modified polystyrene and styrene-based copolymers have been developed to overcome the shortcomings of polystyrene to a certain extent, and K resin is one of them.
    K resins are copolymers made by copolymerization of styrene and butadiene. They are transparent, odorless, and non-toxic, amorphous polymers. As the amount of butadiene contained in the K material varies, its hardness also varies. Because the K material has good fluidity and a wide processing temperature range, its processing performance is good. The main uses in daily life include for cups, lids, bottles, cosmetic packaging, hangers, toys, PVC substitute products, food packaging, and medical packaging supplies.
  5. Acrylonitrile Butadiene Styrene copolymers (ABS):
    ABS has a high degree of rigidity, hardness, impact and chemical resistance, radiation resistance, and sterilization resistance. In medical applications, ABS is mainly used for surgical tools, roller clips, plastic needles, toolboxes, diagnostic devices, hearing aid shells, and the shells of large medical equipment.
  6. Polycarbonate (PC):
    Typical properties of PC are toughness, strength, rigidity, and heat-resistant which allows for steam sterilization, making PC the preferred choice for hemodialysis filters, surgical tool handles, and oxygen tanks. Medical applications of PC also include needle-free injection systems, perfusion instruments, blood centrifuge bowls, and pistons. Taking advantage of its high transparency, vision correction glasses are made of PC.
  7. Polytetrafluoroethylene (PTFE):
    PTFE is a white polymer with a smooth waxy appearance. Its non-stick property makes it an important plastic for medical applications. Its friction coefficient is the lowest among plastics, and it has good biocompatibility. It is commonly used as a graft material in surgical procedures and is also frequently used for catheters, as it interferes with the ability of bacteria and other infectious agents to adhere to catheters. It can be made into artificial blood vessels and other devices that are directly implanted into the human body.
Published by Apr 18, 2022 Source :kknews, Source :biomeder

Further reading

You might also be interested in ...

Headline
Trend
Comfort and Breathability Function: The Trend of Sustainable Development and Eco-friendly Materials
In today’s textile industry, with the growing awareness of environmental protection, sustainable development and eco-friendly materials have become mainstream trends. This fabric for sports support and rehabilitation braces is designed for long-term wear, providing exceptional comfort while offering excellent breathability. Its breathable properties effectively keep the skin dry, reducing odors and bacterial growth, ensuring the freshness and hygiene of the wearer.
Headline
Trend
AI Maglev Conveyor Systems: “Floating” into the Future of Manufacturing Logistics
Imagine goods no longer moving on rollers or belts, but gliding silently through the air like floating little trains—this is the magic of AI Maglev Conveyor systems. Magnetic levitation creates zero friction, low energy consumption, and minimal maintenance, while AI acts as a smart dispatcher, instantly rerouting, adjusting speed, and scheduling, making production lines unbelievably flexible. It’s not just cool—it can serve high-precision manufacturing like semiconductors and medical devices, with virtually no vibration. The market is skyrocketing, with manufacturing giants in China, Europe, and the U.S. racing to adopt it. Although the initial investment is high, the long-term benefits—energy savings, reduced maintenance, and efficiency gains—are remarkable. In the future, it will become the transport hub of smart factories, coordinating robots, systems, and human labor, so that walking into the facility feels like watching a silent, precise, and seamless showcase of future material handling.
Headline
Trend
The Rise of Digital Textile Printing: Replacing Traditional Dyeing and Printing, Moving Toward a Low-Pollution, Zero-Inventory Era
Traditional textile dyeing and printing have long been criticized for their high water consumption, heavy use of chemicals, and high energy demand—factors that not only impose a severe burden on the environment but also put pressure on the textile industry as it faces increasingly stringent environmental regulations. With the advancement of global sustainability policies and growing consumer awareness of environmental protection, Digital Textile Printing (DTP) has gradually come into the spotlight, emerging as a key direction for textile industry transformation. Featuring flexible production models, reduced environmental impact, and the ability to support small-batch, diversified designs, this technology is rapidly reshaping the landscape of the printing and dyeing sector.
Headline
Trend
AI Doctor is Here? A Medical Revolution Beyond Your Imagination
In the rapidly developing digital era, healthcare is being profoundly transformed by Artificial Intelligence (AI), the Internet of Things (IoT), and wearable devices. This is not just a technological upgrade; it is akin to the "iPhone moment" that disrupted traditional healthcare services and doctor-patient interactions, opening a new chapter in health management. Historically, medicine has been a "passive" journey fraught with uncertainty and high barriers. The powerful rise of AI is now painting a new blueprint for the global healthcare industry, steering health management toward a smarter and more personalized future.
Headline
Trend
YCS and International Bicycle Brands: A Collaboration Story
As cycling becomes more popular globally, particularly in the high-end sports bicycle sector, the demand for precision parts is steadily increasing. These components not only play a central role in a bike's performance but are also a direct reflection of the rider's experience. Many international brands are now placing a greater emphasis on personalized design and high-quality machining to meet the diverse needs of different users.
Headline
Trend
The Dual-Track Growth of Mental Health and Post-Acute Care: A New Focus for Healthcare Institutions in 2025
In 2025, the global healthcare system faces the dual challenges of a surge in chronic diseases and an aging population. The focus is shifting from treating a single illness to promoting holistic health. In the post-pandemic era, the demand for mental health services has risen sharply, with a continuous increase in the number of people suffering from anxiety and depression. To meet this challenge, healthcare institutions are actively adopting a dual-track strategy, focusing on expanding behavioral health services and ensuring seamless transitions to post-acute care. This approach is designed to enhance the continuity of patient care and improve long-term health outcomes.
Headline
Trend
Global Freight Transportation Trends Analysis
In recent years, the global freight market has continued to expand. In 2023, worldwide freight volume reached 11.6 billion tons, with maritime shipping still accounting for the largest share, while air and land transport have grown rapidly due to the rise of e-commerce. In the face of trends such as digitalization, automation, and low-carbon transportation, companies that leverage the latest transportation data and models will gain a competitive advantage and be better equipped to respond to future market changes.
Headline
Trend
Taiwan's Textile Transformation: Digitalization and Localization for Agile Responsiveness
Historically, the global textile industry relied on mass production and economies of scale for low-cost manufacturing. However, as consumer demands become increasingly diverse and dynamic, small-batch, high-mix production and fast delivery have become the market mainstream. Taiwan, with its complete and advanced textile supply chain and high-end functional fabric technology, has long demonstrated competitiveness on the international stage. Facing global supply chain restructuring and the fast fashion trend, Taiwan's textile industry is actively pursuing a digital and localized transformation. The goal is to build a flexible, responsive agile supply chain, making manufacturing a sustained competitive advantage.
Headline
Trend
Data Powers Smarter Forklifts: IIoT Drives Next-Level In-Plant Logistics
Factory material handling is undergoing a major evolution! From traditional manually operated forklifts and conveyor belts to smart equipment equipped with sensors, AI, and IIoT, these machines do more than just move materials—they’ve become “decision-making partners” connecting production, warehousing, and the supply chain. Real-time monitoring, predictive maintenance, and dynamic scheduling boost efficiency, cut costs, and reduce accidents. Leading factories worldwide are already achieving impressive results with smart material handling. In the future, forklifts and AGVs will be capable of self-diagnosis, cross-plant collaboration, and even intelligent energy management, steering the rhythm of the entire factory. Are you ready to embrace this smart logistics revolution?
Headline
Trend
The Trends of Instant Beverages: A New Era of Convenience, Health, and Flavor
In today's fast-paced world, "convenience" has become a top consideration for many shoppers. Instant beverages not only quickly satisfy thirst and provide an energy boost, but their popularity has surged again with the rise of the "stay-at-home economy" and remote work. From classic 3-in-1 coffee to high-end pour-over tea bags, instant drinks are entering a new era that balances quality and health.
Headline
Trend
New Perspectives on Food Trends: The Evolution from General Wellness to Precise Conditioning
The relationship between modern people and food is undergoing a profound transformation. We no longer view food as merely a necessity for survival, but as an art form—a tool for actively managing our physical condition. This trend is shifting from the vague concept of "wellness" to a more precise, scientific, and personalized approach. In the fast-changing food market, this has become an undeniable mainstream trend.
Headline
Trend
The Path to Upgrading Metal Fabrication: Digital Transformation, Low-Carbon Challenges, and Global Opportunities
Facing resource- and energy-intensive production processes, the metal fabrication industry must harness smart manufacturing and automation—deploying CNC machining, robotic arms, and AI monitoring—to cut costs and errors while enhancing precision and delivery reliability. Integration of ERP, MES, and APS platforms increases process transparency and enables real-time scheduling adjustments, forming a seamless data and management loop. It’s recommended to support this with global market size data and figures on rising automation investments to boost credibility.
Agree