Overview of the Uses and Functions in CNC Lathes
Knowledge

Overview of the Uses and Functions in CNC Lathes

Lathes are machine tools that use turning tools to turn rotating workpieces. On the lathe, drills, reamers, reamers, taps, die and knurling tools can also be used for corresponding processing. Lathes are mainly used for processing shafts, disks, sleeves and other workpieces with rotating surfaces. They are the most widely used machine tools in machinery manufacturing and repair plants.
Published: May 10, 2023
Overview of the Uses and Functions in CNC Lathes

The Uses of Lathe Technology

The development uses and functions of lathes. Lathes are machine tools that use turning tools to turn rotating workpieces. On the lathe, drills, reamers, reamers, taps, die and knurling tools can also be used for corresponding processing. Lathes are mainly used for processing shafts, discs, sleeves, and other workpieces with rotating surfaces. They are the most widely used machine tools in machinery manufacturing and repair plants. In ancient times, lathes were cut by hand or foot, rotating the workpiece through a rope, and holding a tool.

In 1797, the British mechanical inventor Mozley created a modern lathe with a screw drive tool holder

In 1800, the exchange gear was used to change the feed speed and the pitch of the processed thread. In 1817, another Englishman, Roberts, used a four-stage pulley and back wheel mechanism to change the spindle speed. To improve the degree of mechanization and automation, Fitch of the United States invented the turret lathe in 1845

In 1848, the United States appeared a revolver lathe; in 1873, the United States Spencer made a single-axis automatic lathe, and soon he made Three-axis automatic lathes; lathes with gearboxes driven by individual motors appeared in the early 20th century. After the First World War, due to the needs of the arms, automobile, and other machinery industries, various efficient automatic lathes, and specialized lathes developed rapidly. To increase the productivity of small batches of workpieces, in the late 1940s, lathes with hydraulic profiling devices were popularized, and at the same time, multi-tool lathes were also developed.

In the mid-1950s, program-controlled lathes with punched cards, latch plates, and dials were developed.

CNC technology began to be used in lathes in the 1960s and has developed rapidly since the 1970s. Lathes are divided into various types according to their uses and functions. Ordinary lathes have a wide range of processing objects, a large adjustment range of spindle speed and feed rate, and can process the inner and outer surfaces, end surfaces, and internal and external threads of the workpiece. This kind of lathe is mainly operated by workers manually, and the production efficiency is low. It is suitable for single parts, small batch production, and repair workshops. The turret lathe and rotary lathe have a turret tool holder or a revolver tool holder that can hold multiple tools. The workers can use a variety of tools to complete multiple processes in a single clamping of the workpiece, which is suitable for batch production. The automatic lathe can automatically complete the multi-process processing of small and medium-sized workpieces according to a certain program. It can automatically load and unload and repeatedly process a batch of the same workpieces. It is suitable for large-scale and mass production. Multi-blade semi-automatic lathes are divided into single-axis, multi-axis, horizontal and vertical. The layout of the single-axis horizontal type is similar to that of ordinary lathes, but the two sets of tool holders are installed in front, back, or up and down of the main shaft, and are used to process disks, rings, and shafts. Their productivity is 3 to 5 times higher than that of ordinary lathes. The copying lathe can automatically complete the processing loop of the workpiece according to the shape and size of the template or sample. It is suitable for the small-batch and batch production of more complicated workpieces. The productivity is 10 to 15 times higher than that of the ordinary lathe. There are multi-tool holder, multi-axis, chuck, vertical and other types. The main axis of the vertical lathe is perpendicular to the horizontal plane, the workpiece is clamped on a horizontal rotary table, and the tool holder moves on the beam or column. It is suitable for processing larger, heavier workpieces that are difficult to install on ordinary lathes, generally divided into two categories: single column and double column. While the shovel-tooth lathe is turning, the tool holder periodically reciprocates in a radial direction, which is used to form the tooth surface of the forklift milling cutter, hob, etc. Usually with a shovel attachment, a small grinding wheel driven by a separate motor shovel the tooth surface. Special lathes are lathes used to process specific surfaces of certain types of workpieces, such as crankshaft lathes, camshaft lathes, wheel lathes, axle lathes, roll lathes, and steel ingot lathes. The combined lathe is mainly used for turning, but after adding some special parts and accessories, it can also be processed by boring, milling, drilling, inserting, grinding, etc. It has the characteristics of "one machine with multiple functions" and is suitable for engineering vehicles, ships, or mobile Repair work at the repair station.

CNC Machining Technology

The machining principle of CNC milling machine is the same as that of CNC lathe. CNC milling machine also drives the milling machine through digital signals. The milling machine uses the workpiece for XY plane movement. The Z axis is the tool spindle rotation. The working machine for moving working objects for cutting is a very economical way for a few or mass production.

Published by May 10, 2023 Source :th-s

Further reading

You might also be interested in ...

Headline
Knowledge
Smart Healthcare Uncovered:How AI Is Transforming Clinical Practice?
With the rapid rise of artificial intelligence (AI), the healthcare industry is undergoing a disruptive transformation. AI is significantly improving diagnostic accuracy and treatment efficiency while profoundly redefining healthcare professionals’ roles and patient experiences. A comprehensive understanding of the core technologies and clinical applications behind this transformation is essential for grasping the future trends and strategic directions of smart healthcare.
Headline
Knowledge
Principle and Applications of Laser Cutting Machines
As the global manufacturing industry advances toward higher precision and efficiency, laser cutting technology has become a key enabler of industrial upgrading. Compared with traditional shearing, stamping, and mechanical cutting, laser cutting offers non-contact processing, higher accuracy, and greater flexibility. It significantly improves productivity while reducing secondary finishing. Today, it is widely adopted in metalworking and increasingly applied in electronics, aerospace, medical, and architectural design industries.
Headline
Knowledge
Why Are High-Quality Cutting Fluids Critical for Machining Quality?
In CNC and metalworking, cutting fluid is no longer just a coolant—it plays a critical role by providing lubrication, chip removal, and corrosion protection. With the right formulation and concentration, it can reduce cutting heat, minimize friction, extend tool life, and maintain workpiece accuracy. High-pressure cooling further enhances efficiency in deep-hole and high-speed machining. The pairing of tool material with the proper cutting fluid is equally crucial; correct selection and maintenance ensure process stability, prolong equipment life, and improve the overall work environment. Cutting fluid has become an indispensable investment in modern precision manufacturing.
Headline
Knowledge
Introduction to Emerging Printing Technologies: Opening New Horizons for the Future of Printing
With rapid technological progress and increasingly diverse market demands, traditional printing techniques are no longer sufficient to meet modern industry’s requirements for precision, efficiency, and sustainability. As a result, emerging technologies such as UV printing, 3D printing, and Nanoimprint Lithography (NIL) have risen to prominence, offering solutions with higher precision, broader applications, and lower production costs. These innovations have already demonstrated value across packaging, advertising, healthcare, semiconductors, and construction. In the following sections, we will explore their technical features and real-world applications, highlighting the advantages and future potential of these cutting-edge printing technologies.
Headline
Knowledge
The Core Standard for Life-Critical Systems: A Complete Guide to IPC Classification
In high-risk fields such as medical, aerospace, and automotive, IPC classifications determine PCB reliability and safety. Class 3 represents the highest standard, requiring zero tolerance for defects, complete via filling, adequate copper annular rings, and rigorous inspections to ensure operation under extreme conditions, while Class 2 suits long-term use in non-critical equipment with minor cosmetic flaws allowed. Class 3’s strict criteria cover component placement, soldering, plating thickness, and environmental testing—adding cost and production time, but far outweighing the risks of failure in life- or safety-critical systems. Thus, defining high-risk equipment as Class 3 during design is essential, making IPC classification a core safeguard rather than an option.
Headline
Knowledge
The Power of Color: How the Printing Industry Protects Brand Quality
In the printing industry, color has always been a core element influencing both quality and sensory experience. Whether in packaging, advertising, or publications, color accuracy directly affects consumer perception and trust in a brand. With the rise of digitalization and globalization, companies increasingly demand brand consistency, making color management more than just an aesthetic concern—it is a safeguard for printing quality and brand value. This article explores the importance of color management, the application of ICC color calibration, and Pantone’s role in brand identity, providing a comprehensive overview of the core knowledge and practical value of color management in printing.
Headline
Knowledge
Is Your Paper Box Truly Recyclable? The Secrets of Composite Packaging
Imagine a typical morning, a warm drink in your hands, held in what looks like an eco-friendly paper cup. You think to yourself, "At least it's not plastic. It must be better for the environment." But have you ever wondered how that paper container holds a hot liquid without leaking? Can it really be recycled with ease? The truth is, there are hidden secrets about packaging materials you may not know.
Headline
Knowledge
Soft PE/PP Waste Recycling Technology in the Circular Plastic Economy
Soft polyethylene (PE) and polypropylene (PP) waste are widely used in modern plastic industries, including packaging films, agricultural coverings, garbage bags, and logistics materials. Due to their high usage volume and recycling challenges, the effective recovery and processing of these materials have become a critical aspect of sustainable plastic management.
Headline
Knowledge
Machine Tool Lubrication and Cooling Systems: Components and Technologies
Machine tools are the cornerstone of modern manufacturing, enabling precise cutting, forming, and machining of metals and other materials. During operation, these machines generate significant friction and cutting heat, which, without proper management, can lead to tool wear, workpiece deformation, and reduced machining accuracy. Lubrication and cooling systems are essential for mitigating these issues, with lubrication reducing friction and wear, and cooling dissipating heat to maintain thermal stability. Together, these systems enhance machining efficiency, extend equipment lifespan, and improve surface quality. Research indicates that effective lubrication and cooling can boost machining performance by up to 30%. This article explores the critical components—lubrication pumps, pipes, coolant pumps, and filters—while highlighting advanced techniques and future trends.
Headline
Knowledge
Cutting Tools and Clamping Systems in Machine Tools: The Core of Precision and Efficiency
In the machine tool industry,while spindles and drive systems form the backbone of machine tools, cutting tools and clamping systems directly dictate machining precision and efficiency.Cutting tools perform the material removal, while clamping systems ensure the stable positioning of both tools and workpieces. Together, they determine machining accuracy, efficiency, and surface quality.
Headline
Knowledge
Electrical Discharge Machining (EDM) Technology and Its Value in the Aerospace Industry
In the aerospace sector, the design and manufacturing of components are constantly challenged by extreme conditions: high temperature, high pressure, high speed, and prolonged operation. Traditional machining methods are increasingly unable to meet the requirements of next-generation materials and complex geometries. With the widespread adoption of nickel-based superalloys, cobalt-based alloys, and ceramic matrix composites, the limitations of cutting tools in terms of efficiency and tool life have become more evident. At this stage, Electrical Discharge Machining (EDM), with its ability to process high-hardness materials and intricate shapes, has emerged as an indispensable process in aerospace manufacturing.
Headline
Knowledge
Differences in the Application of Textile Materials in Apparel, Medical, and Industrial Fields
Textile materials come in a wide variety, with significant differences in their properties. Different applications have distinct requirements for these properties. For example, in the apparel sector, comfort, aesthetics, and a soft touch are top priorities; in the medical field, hygiene, protection, and resistance to high temperatures or chemicals are emphasized; while in the industrial sector, durability, strength, and special functionalities such as flame retardancy or conductivity are critical. This article aims to compare the application differences of textile materials in the apparel, medical, and industrial fields, exploring selection principles and providing a reference for industry and research.
Agree