Comprehending the CNC Motion Controls and Its Three Common Types
Knowledge

Comprehending the CNC Motion Controls and Its Three Common Types

The first benefit offered by all forms of CNC machine tools is improved automation Because of the operator intervention related to producing workpieces can be reduced or eliminated.
Published: May 10, 2023
Comprehending the CNC Motion Controls and Its Three Common Types
  • The Heart of CNC: Motion Control
  • The Three Basic Motion Types
  • Many CNC machines can run unattended during their entire machining cycle, freeing the operator to do other tasks. This benefit gives the CNC user several side benefits including reduced operator fatigue, fewer mistakes caused by operating error, and consistent and predictable machining time for each workpiece. Since the machine will be running under program control, the skill level required of the CNC operator is also reduced as compared to a machinist producing workpieces with conventional machine tools.

    The Heart of CNC: Motion Control

    The most basic function of any CNC machine is automatic, precise, and consistent motion control. All forms of CNC equipment have two or more directions of motion, called axes. These axes can be precisely and automatically positioned along their lengths of travel.

    Instead of causing motion by manually turning cranks and handwheels as is required on conventional machine tools, CNC machines allow motions to be actuated by servomotors under control of the CNC and guided by the part program. Generally speaking, the motion type such as, rapid, linear, and circular, the axes to move, the amount of motion, and the motion rate or means feed rate are programmable with almost all CNC machine tools.

    A CNC command executed within the control, which commonly through a program tells the drive motor to rotate a precise number of times. The rotation of the drive motor in turn rotates the ballscrew. And the ballscrew drives the linear axis. A feedback device at the opposite end of the ballscrew allows the control to confirm that the commanded number of rotations has taken place.

    Though a rather crude analogy, the same basic linear motion can be found on a common table vise. As you rotate the vise crank, you rotate a leadscrew that, in turn, drives the movable jaw on the vise. By comparison, a linear axis on a CNC machine tool is extremely precise. The number of revolutions of the axis drive motor precisely controls the amount of linear motion along the axis.

    Directions of Motion (Axes)

    The CNC programmer must know the programmable motion directions (axes) available for the CNC machine tool. The axes' names will vary from one machine tool type to the next. They are always referred to with a letter address. Common axis names are X, Y, Z, U, V, and W for linear axes and A, B, and C for rotary axes.

    As stated, programs are made up of commands, and commands are made up of words. Each word has a letter address and a numerical value. The letter address tells the control of the word type. CNC control manufacturers do vary with regard to how they determine word names (letter addresses) and their meanings. The beginning CNC programmer must reference the control of manu-facturer's programming manual to determine the word names and meanings. Here is a brief list of some of the word types and their common letter address specifications.

    • O - Program number (Used for program identification)
    • N - Sequence number (Used for line identification)
    • G - Preparatory function (See below)
    • X - X-axis designation
    • Y - Y-axis designation
    • Z - Z-axis designation
    • R - Radius designation
    • F - Feedrate designation
    • S - Spindle speed designation
    • H - Tool length offset designation
    • D - Tool radius offset designation
    • T - Tool Designation
    • M - Miscellaneous function

    Rotary axis departures still require a letter address (usually A, B, or C) along with the endpoint for the motion. However, the endpoint for a rotary axis motion is specified in degrees (not inches or millimeters).

    The Three Basic Motion Types

    While your particular CNC machine may have more motion types which depending on your application, let's concentrate on the three most common types available on almost all forms of CNC equipment. After briefly introducing each type of motion, we'll show an example program that stresses the use of all three.

    • Rapid Motion (Also Called Positioning)
    • This motion type is used to command motion at the machine's fastest possible rate. It is used to minimize the non-productive time during the machining cycle. Common uses for rapid motion include positioning the tool to and from cutting positions, moving to clear clamps and other obstructions, and in general, any non-cutting motion during the program.

    • Straight Line Motion
    • This motion type allows the programmer to command perfectly straight line movements as discussed earlier during our discussion of linear interpolation. This motion type also allows the programmer to specify the motion rate (feed rate) to be used during the movement. Straight-line motion can be used any time a straight cutting movement is required, including when drilling, turning a straight diameter, face or taper, and when milling straight surfaces.

    • Circular Motion
    • This motion type causes the machine to make movements in the form of a circular path. As discussed earlier during our presentation of circular interpolation, this motion type is used to generate radii during machining. All feed rate related points made during our discussion of straight-line motion still apply.

    Published by May 10, 2023 Source :mmsonline Source :mmsonline Source :mmsonline

    Further reading

    You might also be interested in ...

    Headline
    Knowledge
    Essential for Precision Machining: A Complete Guide to Tungsten Carbide Center Drills
    In modern manufacturing, precision is the core standard by which product quality and performance are measured. From aerospace components to medical devices, even a minor deviation can lead to serious consequences. When it comes to precision drilling, a critical challenge is ensuring that a drill bit can be accurately positioned at the start of a cut while maintaining stability during high-intensity operations. The tungsten carbide center drill is the professional tool engineered specifically to solve this problem.
    Headline
    Knowledge
    From Cavitation Effect to Industrial Applications: The Secrets of Ultrasonic Cleaning
    When your glasses, tableware, or electronic components are stained with stubborn dirt, what can you do? Traditional methods often require vigorous scrubbing or even harsh chemical solvents, which are not environmentally friendly and may scratch the item. At this moment, ultrasonic cleaning acts like an “invisible little helper”, reaching deep into grooves and gaps to gently yet effectively remove contaminants.
    Headline
    Knowledge
    The “Spark Magician” of Metalworking
    Electrical Discharge Machining (EDM) is a non-traditional machining process that removes metal through electrical sparks. Unlike conventional methods, it is not limited by material hardness and can precisely create deep cavities, micro-holes, and complex structures in hardened steel, tungsten carbide, or superalloys. The three main types of EDM include wire cutting, die-sinking, and hole drilling, which are widely applied in mold making, aerospace, automotive, and medical industries. Although EDM has a slower processing speed, works only with conductive materials, and requires consideration of electrode wear and surface treatment, its advantages in high precision, zero cutting force, and superior surface finish make it an indispensable technology in precision manufacturing. Moreover, it continues to evolve in line with the trend toward smart manufacturing.
    Headline
    Knowledge
    Press Brake vs Shearing Machine: Functional and Technical Comparison of Industrial Processing Equipment
    Press Brake and Shearing Machine are two essential types of equipment in the field of machine tools, widely used in the processing of metal, wood, and other materials. They play critical roles in manufacturing, enabling efficient and precise material forming and cutting. This article introduces the definitions, functions, technical features, and applications of folding and cutting machines, offering neutral and practical knowledge sharing.
    Headline
    Knowledge
    Master Chuck Types & Selection: The Essential Guide for Machinists
    In the world of precision manufacturing, every minute detail can determine the quality of the final product. The chuck is a critical yet often overlooked component—it's not just a tool for holding a workpiece, but the very heart of ensuring machining accuracy, efficiency, and safety. This article will take you on a deep dive into the diverse universe of chucks, covering their operating principles, design philosophies, common types, and how to select the right jaws and chucks for different needs. Whether you're new to the industry or a seasoned engineer, this guide will unlock the intricate secrets of chucks, helping you master every detail on your path to manufacturing success.
    Headline
    Knowledge
    An Overview of Electrical Discharge Machining (EDM)
    Electrical Discharge Machining (EDM) is a non-traditional manufacturing process that utilizes electrical sparks to remove material from a workpiece. Unlike conventional machining methods such as milling or turning, which rely on physical contact between a tool and the material, EDM operates without direct contact, making it ideal for processing hard or brittle materials that are difficult to machine otherwise. The process involves generating a series of rapid electrical discharges between an electrode and the workpiece, submerged in a dielectric fluid, which erodes the material through thermal energy. This technique has revolutionized precision manufacturing by enabling the creation of complex geometries with high accuracy.
    Headline
    Knowledge
    Applications of Machine Tools in the Aerospace Industry
    The aerospace industry is a highly specialized and technology-driven sector, encompassing the design, manufacturing, and maintenance of aircraft, spacecraft, satellites, and related equipment. Machine tools play a critical role in this field, enabling the precision machining of complex metal and composite material components. These tools enhance production efficiency while ensuring the accuracy and reliability required to meet the stringent safety and performance standards of aerospace. This document outlines the key applications, technologies, benefits, and future trends of machine tools in the aerospace industry.
    Headline
    Knowledge
    Smart Healthcare Uncovered:How AI Is Transforming Clinical Practice?
    With the rapid rise of artificial intelligence (AI), the healthcare industry is undergoing a disruptive transformation. AI is significantly improving diagnostic accuracy and treatment efficiency while profoundly redefining healthcare professionals’ roles and patient experiences. A comprehensive understanding of the core technologies and clinical applications behind this transformation is essential for grasping the future trends and strategic directions of smart healthcare.
    Headline
    Knowledge
    Principle and Applications of Laser Cutting Machines
    As the global manufacturing industry advances toward higher precision and efficiency, laser cutting technology has become a key enabler of industrial upgrading. Compared with traditional shearing, stamping, and mechanical cutting, laser cutting offers non-contact processing, higher accuracy, and greater flexibility. It significantly improves productivity while reducing secondary finishing. Today, it is widely adopted in metalworking and increasingly applied in electronics, aerospace, medical, and architectural design industries.
    Headline
    Knowledge
    Why Are High-Quality Cutting Fluids Critical for Machining Quality?
    In CNC and metalworking, cutting fluid is no longer just a coolant—it plays a critical role by providing lubrication, chip removal, and corrosion protection. With the right formulation and concentration, it can reduce cutting heat, minimize friction, extend tool life, and maintain workpiece accuracy. High-pressure cooling further enhances efficiency in deep-hole and high-speed machining. The pairing of tool material with the proper cutting fluid is equally crucial; correct selection and maintenance ensure process stability, prolong equipment life, and improve the overall work environment. Cutting fluid has become an indispensable investment in modern precision manufacturing.
    Headline
    Knowledge
    Introduction to Emerging Printing Technologies: Opening New Horizons for the Future of Printing
    With rapid technological progress and increasingly diverse market demands, traditional printing techniques are no longer sufficient to meet modern industry’s requirements for precision, efficiency, and sustainability. As a result, emerging technologies such as UV printing, 3D printing, and Nanoimprint Lithography (NIL) have risen to prominence, offering solutions with higher precision, broader applications, and lower production costs. These innovations have already demonstrated value across packaging, advertising, healthcare, semiconductors, and construction. In the following sections, we will explore their technical features and real-world applications, highlighting the advantages and future potential of these cutting-edge printing technologies.
    Headline
    Knowledge
    The Core Standard for Life-Critical Systems: A Complete Guide to IPC Classification
    In high-risk fields such as medical, aerospace, and automotive, IPC classifications determine PCB reliability and safety. Class 3 represents the highest standard, requiring zero tolerance for defects, complete via filling, adequate copper annular rings, and rigorous inspections to ensure operation under extreme conditions, while Class 2 suits long-term use in non-critical equipment with minor cosmetic flaws allowed. Class 3’s strict criteria cover component placement, soldering, plating thickness, and environmental testing—adding cost and production time, but far outweighing the risks of failure in life- or safety-critical systems. Thus, defining high-risk equipment as Class 3 during design is essential, making IPC classification a core safeguard rather than an option.
    Agree