Power Plant 4.0: Embracing Next-Generation Technologies To Improve Sustainability
Trend

Power Plant 4.0: Embracing Next-Generation Technologies To Improve Sustainability

As industry 4.0 technology continues to advance, existing data can be harnessed to develop machine-learning solutions that deliver real value, optimize decision making, increase flexibility, and attract top talent.
Published: Oct 30, 2020
Power Plant 4.0: Embracing Next-Generation Technologies To Improve Sustainability

How Industry 4.0 Will Improve Sustainability

As the world continues to face climate uncertainties, industrial companies are looking for ways to ensure they are as sustainable as possible while maintaining profitability. Many companies are working toward the goal of being sustainable while also maintaining profitability, in part by integrating and applying artificial intelligence (AI) and machine learning into operations.

Businesses have a growing awareness of sustainability as consumers and world leaders put pressure on them to find solutions for a “greener” future. Businesses vary greatly in their approaches to sustainability. To see real success, it’s vital to understand the program objectives and balance the “Three Ps”: People, Planet, and Profitability. Emissions and waste output are top of mind, and early efforts are underway to build toward a circular economy. Revenue and profitability are also important, so any long-term efforts to go green must account for this and not hinder production.

Lastly, it’s critical to plan ahead for pain points. There are a variety of circumstances that can cause downtime and lost products, which contribute to energy waste and emission increases in asset-intensive industries. Having a plan in place to ensure operations can run as smoothly and efficiently as possible means businesses can better avoid losses. The most reliable way to address the biggest pain points—production and energy waste—in an industrial setting is moving into Industry 4.0 and introducing and implementing digital technologies into operations.

As digital technologies are increasingly introduced into operations, in which ways will they improve energy sustainability?

Industrial processes demand high energy input. According to the U.S. Energy Information Administration, the bulk chemical industry accounts for the largest portion of U.S. industrial energy use, at 28%, followed by refining at 18%. That’s why ensuring processes remain operational and efficient is key to curbing energy output. However, efficiency is often subject to unforeseen variables, like fluctuating temperatures, feedstock changes, and equipment issues. Implementing advanced digital technologies into operations can not only optimize operations around these variables but also find new efficiencies that ultimately impact energy usage and a company’s bottom line.

Digital technologies deliver increased efficiency across the entire operating lifecycle, which results in improved energy usage. Advanced, predictive supply chain scheduling technology can determine issues in processes that could lead to unplanned downtime, thus eliminating problems long before they impact operations. The ability to predict—sometimes weeks in advance—ensures operations run smoothly so energy isn’t wasted on inefficient processes, thus decreasing energy output and emissions.

What technologies do you see having the largest impact on sustainability? Industry 4.0 will bring increased visibility into operations—from the availability of predictive maintenance to augmented reality—and will lead to efficiency improvements from planning and operations to reporting. Artificial intelligence-enabled technologies give technicians the insight they need to make smart, in-the-moment decisions that lead to improved operations and decreased downtime by integrating the experience of previous processes like machine-learning.

Additionally, the adoption of AI-enabled predictive maintenance will expand as businesses appreciate the value of foresight needed to make decisions that improve sustainability and positively impact the bottom line.

Sustainability can be measured by dollars saved in reduced energy consumption, or reduced waste. The introduction of advanced technologies into operations opens the door for operators to expand metrics to include other aspects of sustainability.

Next-generation tools can be easily adopted—and add significant value

Power plants are already highly “sensorized,” meaning vast amounts of data are continuously collected and stored. However, our research shows that a mere 20 to 30 percent of the data collected is used to directly inform decision making and that the data collected from sensors could be better optimized.

The next generation of value will likely be built upon this informational foundation. Operators can employ an analytics-backed approach to find unique data predictors of plant performance. And expanding on those findings with first-principles engineering and operating insights can optimize previously unidentified value drivers. For instance, rapid machine-learning algorithms can already identify optimal parameters to increase combined-cycle gas turbine plant outputs and heat rates. Advanced pattern-recognition methods can identify and predict the need for repairs and proactively recommend focused preventive maintenance.

Optimization models for unit efficiency, flexibility, and operability can further help operators run their facilities to the theoretical limits of performance. The results can include improving their bottom lines by increasing power availability and reducing fuel consumption to minimize carbon emissions.

Despite the considerable progress power plants have made in recent years, they have only scratched the surface of what digitization can achieve. Efficient and resilient digitally enabled operations are key to success in the next normal. Those that do not make the most of their data risk falling behind—even in times of economic stability. The changes experienced during the pandemic offer utilities the opportunity to adopt new operating models that enable faster decision making, increase structural flexibility, and attract new talent.

Generating power from fossil fuels will continue to be the norm for the time being, as transitioning to renewable energy sources is a complicated process. However, fossil plants can do their part to support this transition by continuously improving operationally. After exhausting traditional performance-improvement levers, next-generation digital solutions will likely become the new frontier for growth.

Published: Oct 30, 2020 Source :powermag Source :mckinsey

  • Machine Tool Industry
  • Technology Industry
  • Manufacturing Industry
  • Smart Industry
  • Tech Industry
  • Oil & Gas Industry
  • Industrial Manufacturing
  • Industrial Trends
  • Smart Industrial
  • Industry 4.0
  • Industrial Applications
  • Industrial Output Value
  • Industrial Digitalization
  • Offshore Wind Power Market
  • Power Plant 4.0

Further reading

You might also be interested in ...

Headline
Trend
The Characteristics of Non-Woven Fabric and its Use in Agriculture
Non-woven fabrics have been produced in the early stages of the development of the petrochemical industry. At that time, they only used their softness and bulkiness for packaging, covering, filling, and other materials. Due to the rapid development of materials science, the application scope of non-woven fabrics has expanded to various fields of industry and commerce, civil engineering, medical treatment, agriculture and environmental engineering, and its existence can be seen everywhere.
Headline
Trend
The Growth Driver of the Global Cloud Server Market
The cloud server market is a cloud infrastructure service that allows service providers and end-users to use virtual networks to build architectures.
Headline
Trend
Ultra-Precision Machining System Technology, Cross-Domain Integration Added Value
Superfinishing machining technology is an important support technology for modern high-tech warfare, and is the development foundation and development direction of modern high-tech industries and science and technology.
Headline
Trend
How Will AI Robots Disrupt the Manufacturing Industry?
Artificial intelligence has brought in a new generation of robotics technology: Robotics 2.0. The principal challenge is the transformation from original manual programming methods to true autonomous learning. Faced with this challenge for innovation in AI robotics, how can Taiwan's manufacturing industry best seize the opportunity?
Headline
Trend
A Zero-Waste Era that Considers Economic Growth
In the past, excessive consumption, wanton mining, indiscrete manufacturing, and careless abandonment of wastes, led to the rapid depletion of natural resources. Now, the pursuit of a circular economy, with the goal of zero waste through recycling of resources, is being implemented in an attempt to solve environmental problems.
Headline
Trend
Facing the Digital Age, Face Recognition Technology Has Improved
Artificial Intelligence, Machine Learning, Deep Learning, and Big Data are topics that have been frequently discussed recently. These technologies are used in many fields, including the financial industry, logistics industry, business analysis, unmanned vehicles, computer vision, natural language processing, etc., and have spread in every corner of life.
Headline
Trend
The Trend of the Food Industry in 2021
The capital expenditure for automation in the global food and beverage industry is approximately US$19 billion. This includes 9 billion US dollars in process equipment automation, 7 billion US dollars in packaging and material handling equipment, and the remaining 3 billion US dollars in production line automation.
Headline
Trend
Explore Opportunities in the Maternal and Child Market
The market for women and infants will fluctuate with changes in the market population, and consumption patterns will also respond to changes in society, moving towards online and offline channels for simultaneous sales. Consumers will also pay more attention to the safety, comfort, and fashionable compatibility of products.
Headline
Trend
The Textile Trend Is Towards Intelligent Manufacturing and Development of a Circular Economy
With the global economic development, the demand of the consumer market has driven the vigorous growth of the textile industry. However, under the business model of production-based sales, excessive production has not only caused environmental pollution but has also caused unnecessary waste of resources. Over the past few years, this has led the United Nations and the European Union, to begin to advocate "sustainability" and "environmental protection" as the focus of global development for the next 10 years.
Headline
Trend
Four Major Markets Drive the Growth of Global Communications Industry Output Value
The four major markets of "consumer", "5G telecommunication network", "enterprise network" and "data center" will drive the growth of the global communications market in 2021.
Headline
Trend
Consumer Electronics Industry Revolution
The size of the consumer electronics market was worth US$1 trillion in 2019 and is expected to grow at a compound annual growth rate of more than 7% between 2020 and 2026. Industry participants continue to invest in the research and development of new consumer electronics products, including smartphones, smart wearable devices, and home appliances, which will drive market growth.
Headline
Trend
The Printing Industry Under the Influence of Internet Technology and Digital Media
The printing industry is very complex. It not only has many internal sub-industries but also involves many upstream and downstream related industries. It can be said that it is a huge industry system. The printing industry has a long history of development. Starting from the invention of printing in ancient China, printing technology has continued to innovate, forming a large industry, which we are almost engaged every day. Digital printing, 3D printing, other new emerging printing technologies will overturn and play new roles in printing industry markets.
Agree