Power Plant 4.0: Embracing Next-Generation Technologies To Improve Sustainability
Trend

Power Plant 4.0: Embracing Next-Generation Technologies To Improve Sustainability

As industry 4.0 technology continues to advance, existing data can be harnessed to develop machine-learning solutions that deliver real value, optimize decision making, increase flexibility, and attract top talent.
Published: Oct 30, 2020
Power Plant 4.0: Embracing Next-Generation Technologies To Improve Sustainability

How Industry 4.0 Will Improve Sustainability

As the world continues to face climate uncertainties, industrial companies are looking for ways to ensure they are as sustainable as possible while maintaining profitability. Many companies are working toward the goal of being sustainable while also maintaining profitability, in part by integrating and applying artificial intelligence (AI) and machine learning into operations.

Businesses have a growing awareness of sustainability as consumers and world leaders put pressure on them to find solutions for a “greener” future. Businesses vary greatly in their approaches to sustainability. To see real success, it’s vital to understand the program objectives and balance the “Three Ps”: People, Planet, and Profitability. Emissions and waste output are top of mind, and early efforts are underway to build toward a circular economy. Revenue and profitability are also important, so any long-term efforts to go green must account for this and not hinder production.

Lastly, it’s critical to plan ahead for pain points. There are a variety of circumstances that can cause downtime and lost products, which contribute to energy waste and emission increases in asset-intensive industries. Having a plan in place to ensure operations can run as smoothly and efficiently as possible means businesses can better avoid losses. The most reliable way to address the biggest pain points—production and energy waste—in an industrial setting is moving into Industry 4.0 and introducing and implementing digital technologies into operations.

As digital technologies are increasingly introduced into operations, in which ways will they improve energy sustainability?

Industrial processes demand high energy input. According to the U.S. Energy Information Administration, the bulk chemical industry accounts for the largest portion of U.S. industrial energy use, at 28%, followed by refining at 18%. That’s why ensuring processes remain operational and efficient is key to curbing energy output. However, efficiency is often subject to unforeseen variables, like fluctuating temperatures, feedstock changes, and equipment issues. Implementing advanced digital technologies into operations can not only optimize operations around these variables but also find new efficiencies that ultimately impact energy usage and a company’s bottom line.

Digital technologies deliver increased efficiency across the entire operating lifecycle, which results in improved energy usage. Advanced, predictive supply chain scheduling technology can determine issues in processes that could lead to unplanned downtime, thus eliminating problems long before they impact operations. The ability to predict—sometimes weeks in advance—ensures operations run smoothly so energy isn’t wasted on inefficient processes, thus decreasing energy output and emissions.

What technologies do you see having the largest impact on sustainability? Industry 4.0 will bring increased visibility into operations—from the availability of predictive maintenance to augmented reality—and will lead to efficiency improvements from planning and operations to reporting. Artificial intelligence-enabled technologies give technicians the insight they need to make smart, in-the-moment decisions that lead to improved operations and decreased downtime by integrating the experience of previous processes like machine-learning.

Additionally, the adoption of AI-enabled predictive maintenance will expand as businesses appreciate the value of foresight needed to make decisions that improve sustainability and positively impact the bottom line.

Sustainability can be measured by dollars saved in reduced energy consumption, or reduced waste. The introduction of advanced technologies into operations opens the door for operators to expand metrics to include other aspects of sustainability.

Next-generation tools can be easily adopted—and add significant value

Power plants are already highly “sensorized,” meaning vast amounts of data are continuously collected and stored. However, our research shows that a mere 20 to 30 percent of the data collected is used to directly inform decision making and that the data collected from sensors could be better optimized.

The next generation of value will likely be built upon this informational foundation. Operators can employ an analytics-backed approach to find unique data predictors of plant performance. And expanding on those findings with first-principles engineering and operating insights can optimize previously unidentified value drivers. For instance, rapid machine-learning algorithms can already identify optimal parameters to increase combined-cycle gas turbine plant outputs and heat rates. Advanced pattern-recognition methods can identify and predict the need for repairs and proactively recommend focused preventive maintenance.

Optimization models for unit efficiency, flexibility, and operability can further help operators run their facilities to the theoretical limits of performance. The results can include improving their bottom lines by increasing power availability and reducing fuel consumption to minimize carbon emissions.

Despite the considerable progress power plants have made in recent years, they have only scratched the surface of what digitization can achieve. Efficient and resilient digitally enabled operations are key to success in the next normal. Those that do not make the most of their data risk falling behind—even in times of economic stability. The changes experienced during the pandemic offer utilities the opportunity to adopt new operating models that enable faster decision making, increase structural flexibility, and attract new talent.

Generating power from fossil fuels will continue to be the norm for the time being, as transitioning to renewable energy sources is a complicated process. However, fossil plants can do their part to support this transition by continuously improving operationally. After exhausting traditional performance-improvement levers, next-generation digital solutions will likely become the new frontier for growth.

Published by Oct 30, 2020 Source :powermag Source :mckinsey

Further reading

You might also be interested in ...

Headline
Trend
From Components to Systems: Unveiling the Core Drivers of Robotics Industry Trends
Artificial intelligence and automation technologies are advancing at a rapid pace, driving large‑scale deployments of robots across manufacturing, healthcare, logistics, and service sectors. This momentum is propelling overall industry upgrades and operational efficiency leaps. Amid this wave, mastering the manufacture of high‑precision, high‑reliability core components has become the decisive factor in market competitiveness.
Headline
Trend
The Purifying Force Between Industries: The Evolution and Trends of Cutting Fluid Recycling Systems
Over the past decade, cutting fluid recycling and regeneration technologies have evolved from auxiliary support services into essential core equipment and processes within manufacturing. Recycling and reusing cutting fluids reduce raw material and water waste, making production processes more aligned with circular economy principles. According to market forecasts, the global cutting fluid market size will reach USD 3.78 billion in 2024 and is expected to grow to USD 5.64 billion by 2033, with a compound annual growth rate (CAGR) of approximately 4.3%. Among this, the market for regeneration equipment and treatment services is expanding particularly rapidly, reaching about USD 1.31 billion in 2024 and projected to double to USD 2.61 billion by 2033, with a CAGR as high as 7.8%.
Headline
Trend
Future Trends and Key Technological Breakthroughs in Plastic Recycling Equipment
As global environmental awareness continues to grow, the plastic recycling industry is presented with new development opportunities. However, the sector still faces multiple challenges, including improving recycling rates, efficiently sorting various types of plastics, and reducing operational costs.Plastic recycling involves sorting, cleaning, and processing waste plastics into reusable materials, helping reduce pollution and promote resource reuse.
Headline
Trend
The Shift to Onshoring: How Taiwan’s Supply Chain Strength Is Drawing Global Investment
Recently, increasing geopolitical tensions and global supply chain disruptions resulting from the pandemic have caused multinational corporations to rethink the structure of their supply chains. To mitigate risks and improve resilience, a growing number of manufacturers are shifting their operations from offshoring to onshoring and nearshoring. Thanks to its robust manufacturing ecosystem, strategic location, and technological expertise, Taiwan has emerged as a key destination for advanced manufacturing and high-value component production. Backed by a highly skilled workforce, resilient infrastructure, and advanced manufacturing capabilities, Taiwan is deeply integrated into global technology supply chains and offers stable, tech-driven production networks. These strengths position Taiwan as an ideal onshoring partner and are drawing renewed global investment.
Headline
Trend
Custom Mold and Die Services in Southeast Asia: Taiwan’s Competitive Edge
Custom tooling is the foundation of precision manufacturing, enabling the production of everything from smartphone casings and automotive parts to packaging components and medical devices. In this fast-growing market, Taiwan had remained a trusted leader, delivering advanced tooling solutions that meet the speed, complexity, and quality demands of modern industry.
Headline
Trend
Taiwan's E-Bike Export Surge: Key Markets and Trends Driving Growth
Taiwan's e-bike industry has experienced significant fluctuations in recent years. After reaching a peak in 2022, exports faced a downturn in 2024, with a 47% decline in e-bike exports compared to the previous year. Despite these challenges, the industry is showing signs of recovery and adaptation, positioning itself for future growth. Taiwan has rapidly emerged as a global leader in this booming sector. Once primarily recognized for traditional bicycle manufacturing, Taiwan has transformed into a high-tech hub for premium electric mobility solutions.
Headline
Trend
Taiwan's Strategic Role in Global Data Storage and Memory Supply Chains
With its robust semiconductor industry, advanced manufacturing capabilities, and strategic investments, Taiwan contributes significantly to the production and innovation of memory technologies essential for various applications, from consumer electronics to data centers.
Headline
Trend
Taiwan’s Medical Device Manufacturing: The Medical Devices Act and Its Global Significance
In recent years, Taiwan has emerged as a significant player in the global medical device industry—an ascent shaped not only by its advanced manufacturing capabilities but also by bold regulatory transformation. At the heart of this transformation is the Medical Devices Act, a landmark piece of legislation that redefined how medical technologies are developed, approved, and marketed within Taiwan. Driven by the need to align with international standards and respond to the growing complexity of modern medical technologies, the Act has introduced a risk-based regulatory framework, streamlined approval processes, and facilitated global market access. These reforms have strengthened Taiwan’s position as a competitive and trusted source of medical devices for global healthcare markets. Taiwan's medical device industry is now undergoing rapid growth, propelled by this regulatory clarity, continued investment in high-tech innovation, and rising global demand for safe, effective, and export-ready medical solutions. For manufacturers and investors looking to access the international medical device market, Taiwan offers a strategically evolving landscape that is both business-friendly and globally connected.
Headline
Trend
Taiwan’s Strategic Role in the Global Solar and Battery Market: Opportunities and Innovations
Taiwan’s solar generation reached 12.9 billion kWh in 2023, providing almost 48% of Taiwan’s total renewable energy generation. The focus of the government on energy security and sustainability aligns with the expansion of solar energy infrastructure. The growing electricity demand is pushing the need for additional solar photovoltaic (PV) installations, particularly in industrial and commercial sectors, which are significant consumers of electricity in Taiwan. Moreover, the energy requirements of the industrial sector are driving the adoption of large-scale solar PV projects. In parallel, Taiwan's battery market is expected to reach USD 0.77 billion by 2025 and grow at a CAGR of 14.3% to USD 1.49 billion by 2030. The government plans to accumulate 590 MW of battery-based energy storage by 2025, with significant contributions from both public and private sectors.
Headline
Trend
Powering the Future: New Energy Vehicles, Sustainable Manufacturing, and Challenges
In the quest for a sustainable and eco-friendly future, the automotive industry is witnessing a profound transformation with the emergence of New Energy Vehicles. New Energy Vehicles, commonly known as NEVs, encompass a wide range of vehicles powered by alternative energy sources or a combination of traditional and renewable energy technologies. The implementation of sustainable manufacturing practices and collaboration among stakeholders presents challenges for NEV development as well as great potential for market growth.
Headline
Trend
Charging Ahead: Recharging Infrastructure in the Electric Vehicle Industry
As the electric vehicle (EV) revolution gains momentum worldwide, one of the critical pillars supporting this transition is the development of a robust recharging infrastructure network. This network plays a pivotal role in the widespread adoption of electric vehicles, ensuring convenience, accessibility, and sustainability for EV owners. Factors contributing to the acceptance of EVs and their associated recharging infrastructure include environmental awareness, advancements in battery technology, vehicle design, the expanding range of available EV models, and the implementation of government incentives to promote these new technologies.
Headline
Trend
Beyond Driving: The Future Landscape of Smart Automobile Technology
As the smart automotive industry embraces the shift toward sustainability, innovation, and connectivity, the manufacturing of Electric Automobiles (EVs) and New Energy Vehicles (NEVs) is shaping the future of transportation. Let’s explore some of the dynamic technology and key factors driving their evolution.
Agree