Smart Healthcare and Medical Technology Create a New Generation of Medicine
Trend

Smart Healthcare and Medical Technology Create a New Generation of Medicine

Developments in medical technology are increasing rapidly, and are no longer limited to drugs or medical equipment. Artificial intelligence, 3D printing technology, virtual reality (VR), and big data, which once only appeared in science fiction or movies, are now being used to treat or prevent diseases, leading medical technology into a new era.
Published: Jan 18, 2022
Smart Healthcare and Medical Technology Create a New Generation of Medicine

Artificial intelligence reduces the burden on medical staff:

Facing birth, old age, sickness, or death, whether of themselves or their relatives and friends, people often require medical diagnoses that can put a heavy workload on medical staff. The burden can often lead to medical staff becoming physically and mentally tired. Rigorous medical procedures are often required on the spot where there is no room for time to be lost. Fortunately, with the rapid development of technology, artificial intelligence has been gradually introduced into the medical industry which can increase efficiency and reduce the strain and burden on medical personnel.

In hospital patient care for example, robots can perform some of the daily tasks of nurses such as dispensing medicine, taking body temperature, drawing blood, cleaning wards, and managing visitor records. Interaction and monitoring of patients at home is also possible. Health status can be monitored and recorded, allowing doctors to more efficiently evaluate the patient’s condition and determine the time needed for follow-up consultation, and allow patients to save time and effort in going back and forth to the hospital.

For surgical treatment procedures, artificial intelligence robots can reduce the pressure on medical staff and allow patients to receive better medical care. Through a robotic controller, which can retrieve the doctor's hand movements, the doctor is able to give surgical instructions to a robotic arm operating inside the human body. This technology makes minimally invasive surgery more precise and efficient.

Other applications for medical robots are not limited by shape and size. For example, if a child accidentally swallows a foreign object such as a battery, a capsule containing a micro robot can be swallowed. After the capsule casing dissolves, the doctor can instruct the robot through radio control to remove the battery and apply medicine if needed.

3D printed human body and devices:

Another promising technology being applied in the medical field is 3D printing technology. It is currently most commonly used in the production of in-vitro medical devices, including medical models in surgery, hearing aids, templates for dental surgery, and prosthetics. 3D printing can create prosthetic limbs that more accurately fit the user's body size, give better user comfort, and have a lower cost and shorter production time than traditional technologies. 3D printing can even make prosthetic limbs, bones and organs. Because the materials used can be absorbed by the body, unlike traditional steel pins which need to be removed by surgery, 3D printed items can save patients from the pain of secondary surgery. 

Entering the era of VR and Big Data:

VR technology has also begun to be applied in the medical field. VR can guide patients to more effectively recall or imagine scenes during psychotherapy. Regarded as a "conscious anesthetic", it is allowing burn patients to take their focus off procedures being performed during debridement and dressing changes. Preliminary tests show VR games can reduce pain by as much as 50%. VR allows medical staff to receive virtual training by performing repetitive, precision, surgery procedures using VR, thus improving their skills and increasing the success rate of surgery. 

The medical community can bring a more rapid response for epidemic prevention and disease treatment by taking advantage of various types of big data and fast processing speeds. Using personal health APPs on mobile phones, larger volumes of health and medical information can be collected and analyzed, providing more accurate data for clinical research.

What technological applications does smart healthcare include?

Smart healthcare generally refers to the application of information and communication technology (ITC) in the medical and health field, including medical care, public health monitoring, etc. There are four major directions of mobile smart medical care, including "promoting electronic medical records and medical image transmission", "hospital safety care RFID program", "promoting remote health care" and "health database value-added application". The new technologies most commonly used in smart healthcare include artificial intelligence (AI), blockchain, cloud, big data, edge computing, and 5G technology.

The application of information technology can reduce error events and increase productivity. IT has the potential to reduce costs and foster greater accountability on the patient side.

What are the challenges facing the development of smart healthcare?

  1. Restricted regulations make it difficult to obtain medical data:
    Because medical data involves the personal data of patients and is difficult to obtain, the application of artificial intelligence in the medical field is slower than that of manufacturing, transportation, and other industries. Even though Taiwan has the world's largest health care data, it cannot be used commercially due to restrictions imposed by the Personal Data Protection Act.
  2. Health insurance subsidies are limited, and hospitals lack incentives for promotion:
    Artificial intelligence medical services must be approved by the competent authorities such as the Ministry of Health and Welfare before they can be used for medical diagnosis. However, the Food and Drug Administration manages medical materials (hardware), and the relevant requirements for approval do not apply to software (algorithms).
  3. Taiwan lacks the software industry:
    Many people believe that Taiwan's technology industry and medical technology are leading the world, and these technologies could be coupled with health care information to create a market transformation that could match the success of the semiconductor industry. However, the strength of Taiwan's technology industry is hardware, and the core of smart medical care is software (algorithms), so Taiwan may not necessarily have a leading edge.
  4. Because most users of smart medical services are physicians, but R&D and manufacturing are largely in the technology industries, the two parties must cooperate closely to develop products that meet the needs of the medical field. The organizational culture and professional language of the medical world and technology industries are quite different, so more professionals with the talents to understand both medicine and technology are needed to coordinate and connect the two industries.
Future Outlook:

Digital medical care combines AI artificial intelligence, cloud big data, remote services, genomics, life science, and other technologies to provide accurate diagnosis and comprehensive care, improve treatment effectiveness, reduce medical waste, and reduce medical care burdens. Market acceptance has greatly improved.

Although the rapid development of medical technology can reduce the deadly threat of diseases, "prevention is better than cure" is always the most effective way of health. Both encompass huge expenses that cannot be ignored. It is best to make an early action plan to reserve medical expenses for emergencies and prepare yourself for the health and future of your family.

Published by Jan 18, 2022 Source :blackrock, Source :futurecity

Further reading

You might also be interested in ...

Headline
Trend
The Application of Materials Science in Medical Device Manufacturing
In the field of medical device manufacturing, materials science plays a central role, directly impacting the safety, durability, and clinical performance of equipment. With the rapid development of smart healthcare and precision medicine, the demands for material performance have become increasingly stringent, particularly in the areas of biocompatibility, antimicrobial properties, and lightweight design.
Headline
Trend
Globalization and Steel-and-Glass Structures: Has the Architectural Divide Between East and West Disappeared?
In the West, concrete is a symbol of strength and efficiency, yet in the hands of a Japanese master, it can become a vehicle for Zen philosophy. In Asia, bamboo is revered as a sustainable material, but in the West, it is being redeveloped into a high-tech, eco-friendly solution. This article will delve into why architects from the East and West, even when faced with the same materials, can create two completely different architectural identities. The root of this lies in a fundamental difference in philosophy: the Eastern focus on living in harmony with nature and the Western drive to challenge physical limits.
Headline
Trend
Sewing Challenges in the Era of Sustainability: Balancing Durability and Eco-Friendliness
In discussions on sustainable textiles, sewing threads may seem insignificant, yet they play a crucial role. The material and production process of threads not only affect the durability of garments but also have long-term environmental impacts. In particular, under the influence of “fast fashion,” low-quality threads often break or fade easily, leading to garments being quickly discarded. In contrast, durable threads made from sustainable sources help extend the life cycle of clothing, reduce waste, and embody the concept of “slow fashion.”
Headline
Trend
Smart Breathing Masks: From Pandemic Essential to Intelligent Healthcare
The evolution of healthcare is a continuous response to the needs of the times. Breathing masks, a medical consumable we once paid little attention to, are a concrete example of this transformative wave. They are shifting from being a cold, professional tool to a gentle companion infused with intelligence and human-centered care.
Headline
Trend
Addressing Packaging Challenges Across Industries: Key Strategies for Food, Chemical, and Pharmaceutical Sectors
Do different industries face the same challenges? While the products of the food, chemical, and pharmaceutical industries vary greatly, their packaging lines share a common set of core challenges: how to ensure quality and safety while balancing high efficiency and regulatory compliance. As a result, customized packaging solutions have become the mainstream. Packaging machines are no longer single-function devices for "capping and filling" but rather comprehensive systems designed to meet the specific regulations of each industry.
Headline
Trend
The AI Revolution in Healthcare: Redefining the Future of Medicine
The explosive rise of artificial intelligence (AI) is ushering in an unprecedented transformation within the healthcare industry. No longer just a data analysis tool, AI has evolved into a smart assistant capable of deep collaboration with human experts and even operating independently. From diagnostic assistance to personalized treatment plans, AI is making healthcare more efficient, precise, and accessible to every patient.
Headline
Trend
Waterless Printing & Smart Tech: The New Eco-Standard for Label Printing
As global expectations for environmental protection rise, both consumers and brands are placing greater emphasis on the environmental impact of a product’s entire lifecycle—from production to recycling. Labels and stickers, as common products in the printing industry, have traditionally relied on large amounts of water, solvents, and energy in their production processes, creating a significant environmental burden. Today, sustainable printing is no longer an optional add-on but a key strategy for building brand trust and enhancing market competitiveness. Brands with clear eco-friendly initiatives are more likely to gain favor from both policymakers and the market, positioning themselves at the forefront of the global sustainability trend.
Headline
Trend
Modern Scaffolding: A Guide to Revolutionizing Construction Safety & Efficiency
From the construction of the ancient pyramids of Egypt to the rise of modern skyscrapers, one crucial temporary structure has always played the role of an unsung hero: scaffolding. This support system not only provides a safe foothold for workers but has also continuously evolved from a simple framework into a highly efficient, precise, and intelligent engineering system.
Headline
Trend
The Connection Between Medical Device Manufacturing and Machine Tools
The medical industry is experiencing rapid growth, driven by an aging population, rising chronic diseases, and technological advancements. The demand for high-precision medical devices is increasing, requiring manufacturing processes that ensure safety, reliability, and performance. Machine tools play a critical role in meeting these stringent requirements, enabling the production of complex medical instruments with exceptional accuracy.
Headline
Trend
Smart Manufacturing in Printing: A New Era of Efficiency, Precision, and Sustainability
For over a century, the printing industry has been regarded as a relatively mature and stable sector. However, as market demand diversifies and the wave of digitalization accelerates, printing is undergoing a profound transformation. In the era of Industry 4.0, intelligence and automation have become the keywords of competitiveness. From AI (Artificial Intelligence) to IoT (Internet of Things), and the rise of post-press automation, these technologies are quietly reshaping every step of the printing process. Printing is no longer just about reproducing text and images; it is evolving into an era of “smart manufacturing” that is more efficient, precise, and environmentally friendly.
Headline
Trend
Industrial Applications of CNC in the Robotic Arm Industry
CNC technology is an automated system that precisely controls machinery through computer programs, widely applied across various manufacturing sectors. The robotic arm industry encompasses both industrial uses (such as assembly and welding) and service applications (such as latte art or maintenance). In Japan, for instance, people with disabilities can remotely operate robots from home for work. This industry is visibly experiencing rapid growth. According to 2025 market data, the global robotics market is expected to reach USD 50.8 billion, with service robots accounting for USD 40.58 billion, demonstrating strong growth potential. The application of CNC in the robotic arm industry extends beyond component manufacturing to control systems and versatile task execution.
Headline
Trend
From Solar to Wind: The Heart of Green Energy
When discussing the energy transition, attention often falls on the surface area of solar panels, the blades of wind turbines, or the massive structures of nuclear power plants. Yet behind these world-changing energy systems, the critical components that drive solar, wind, and nuclear operations rely heavily on precision-manufactured CNC machines. Often hailed as the “brains of manufacturing,” these machines, with micron-level precision and highly automated capabilities, serve as the invisible engine powering technological breakthroughs and future innovations in the energy sector.
Agree