Solid-State Batteries Will Greatly Change the Application Scenarios of Electric Vehicles and Energy Storage Systems
Market News

Solid-State Batteries Will Greatly Change the Application Scenarios of Electric Vehicles and Energy Storage Systems

The endless incidents of electric vehicles burning cars and everyone's concerns about the battery of the energy storage system point directly to the two most important application scenarios to be solved, that is, electric vehicles and energy storage systems. And this is also the application scenario where solid-state batteries have the most chance to win.
Published: Oct 31, 2022
Solid-State Batteries Will Greatly Change the Application Scenarios of Electric Vehicles and Energy Storage Systems

What is Solid State Battery?

Solid-state battery is a kind of battery using solid electrodes and solid electrolyte, and it is also a member of the lithium battery family. Compared with traditional lithium batteries, the electrolyte is liquid, while the electrolyte used in solid-state batteries is solid, and solves two major shortcomings of liquid batteries: safety issues and energy density.

Characteristics of Solid-State Batteries

  1. High safety: The solid-state battery uses a solid-state electrolyte, which has no problems such as leakage pollution, flammable explosion, etc., and the electrolyte is a solid state. The battery will not cause short-circuit explosion due to the damage of the separator. The strong blocking effect of positive and negative electrodes is less likely to generate lithium dendrites and cause short circuits, and the safety is higher.
  2. High energy density: Due to the safety of solid-state batteries, materials with higher energy density can be selected for the positive and negative electrodes, such as lithium metal for the negative electrode or NCMA mixture for the positive electrode, etc., so that the energy density has the opportunity to exceed that of lithium ternary batteries. Compared with the liquid lithium-ion battery of the same volume, the solid electrolyte energy density can have higher battery storage energy, and the charging and discharging speed is also fast.
  3. Small size: Solid-state batteries are lighter, easier to package, greatly increase the volumetric energy density, and do not require monitoring, cooling and thermal insulation systems for lithium-ion batteries. The vehicle chassis can free up more space for batteries, which also helps Increase the battery life of electric vehicles.

In summary, the main advantages of solid-state batteries are: high safety and energy density, fast charging speed, long life, good thermal stability, and will not freeze at low temperatures (heat and cold resistance), etc. In addition, the use of raw materials can be greatly reduced, among which copper and the use of aluminum will drop by a large percentage, and graphite and cobalt can be eliminated from the raw materials. However, solid-state batteries still have problems to be overcome. They are costly and difficult to mass-produce. The internal structure of solid-state batteries is compact and easily affected by thermal expansion and contraction. If the design is improper, the internal structure may be affected.

Types of Solid-State Batteries

According to the different solid electrolyte materials, it is divided into three major technologies: polymer, sulfide and oxide. Among them, polymers belong to organic polymer electrolytes, and sulfides and oxides belong to inorganic ceramic electrolytes.

  1. Polymer: The polymer electrolyte is mainly composed of a polymer matrix and a lithium salt. The advantages are that it is easy to process, and the manufacturing process is similar to that of traditional lithium batteries. It is the easiest solid-state battery to use existing equipment to achieve mass production through transformation. The first to realize industrialization. However, its ionic conductivity is the lowest, and it must be heated to more than 60 degrees to increase the ionic conductivity. Polymers are organic substances with poor electrochemical performance, resulting in the inability to improve energy density.
  2. Sulfide: Sulfide electrolyte has the highest ionic conductivity, but has poor air stability. It is easy to produce toxic hydrogen sulfide when exposed to air. The special needs of production equipment and production environment will cause high costs.
  3. Oxide: Oxide electrolyte has the highest safety among the three major technologies, but it is also the most difficult to develop. However, the mechanical properties of the oxide are hard, and if it is used to make an electrolyte sheet, it is easier to break; the contact with the positive electrode active material is not good enough, resulting in the change from surface contact to point contact, and the interface loss is too large.

The Two Potential Application Scenarios for Solid-State Batteries

The endless incidents of electric vehicles burning cars and everyone's concerns about the battery of the energy storage system point directly to the two most important application scenarios to be solved, that is, electric vehicles and energy storage systems.

Application Scenario 1: Electric Vehicles

For electric vehicles, the most important and expensive part is the battery, which accounts for 40% to 60% of the total cost. It can be said that whoever masters the battery technology will master the next generation of electric vehicle technology. Therefore, everyone wants to find an alternative to liquid lithium batteries. Under this opportunity, the new star of solid-state batteries was born, so electric vehicles have become a potential application scenario of solid-state batteries. Such a good opportunity, why does it fall on solid-state batteries? There are three main reasons:

  1. Non-flammable, non-corrosive, non-volatile, non-leakage, high-temperature-resistant solid electrolyte replaces electrolyte, electrolyte salt and diaphragm, and completely solves the problem of burning cars caused by spontaneous combustion of batteries.
  2. The energy density has a great chance to exceed 500Wh/kg, which can increase the battery life of electric vehicles to 800 kilometers to 1,000 kilometers, which is higher than that of lithium ternary batteries.
  3. The solid-state battery can greatly reduce the weight of the electric vehicle drive system. Since the solid-state battery cell does not contain liquid, the risk of spontaneous combustion can be greatly reduced. Therefore, it can be connected in series and then packaged to reduce the redundancy caused by the external series connection of the existing liquid lithium battery. Mechanism design; at the same time, due to its completely non-flammable characteristics, the BMS temperature control components will be greatly reduced, thereby improving the endurance.

Application Scenario 2: Energy Storage System

Compared with electric vehicles, there are many different battery options for energy storage systems, but the advantages of lithium battery energy storage systems for rapid response are still necessary for participating in the power system, and occupy a certain importance in the development of the energy storage market.

Although it is still too early for solid-state batteries to be applied to energy storage systems at this stage, the energy storage market has already begun to pay attention to the development of solid-state battery technology. Why do solid-state batteries have a chance? There are three main reasons:

  1. Non-flammable, non-corrosive, non-volatile, non-leakage, high-temperature-resistant solid electrolyte replaces electrolyte, electrolyte salt and diaphragm to solve the problem of fire caused by batteries in energy storage systems.
  2. Most energy storage systems do not require fast charging like electric vehicles, and solid-state batteries are handier here.
  3. If it can be mass-produced, because the solid-state battery cells do not contain liquid, the risk of spontaneous combustion can be greatly reduced, so they can be connected in series and then packaged to reduce the redundant mechanism design caused by the external series connection of the existing liquid lithium batteries; With its completely non-flammable characteristics, BMS temperature control components can be greatly reduced, thereby reducing the cost of shell design. Under these two factors, it can simplify the production process and improve the cost competitiveness.

Solid-state batteries have not yet been mass-produced, and lithium batteries will still dominate the energy storage system for a period of time. After all, lithium iron phosphate batteries are low-cost, relatively safe, and have a battery cycle life of more than 3,000 times, which can be used for eight to ten years. It can meet the needs of the existing energy storage market. The business opportunities of these two application scenarios are so large enough for investors to join the market as soon as possible!

Published by Oct 31, 2022 Source :moneydj, Source :The News Lens

Further reading

You might also be interested in ...

Headline
Market News
Emerging Technologies and Market-Driven Integration of the Machine Tool Industry Chain
In the fast-evolving global manufacturing landscape, electric vehicles (EVs), semiconductors, and aerospace industries are emerging as key drivers of technological upgrades. These sectors share a common requirement for complex and high-precision components, which conventional machining methods alone can no longer fully address. This demand is reshaping the machine tool industry chain, from upstream components to midstream machine manufacturing and downstream applications, all showing strong trends toward integration and intelligent development.
Headline
Market News
From Cold Chain to Retail: How Smart Labels Are Reshaping Supply Chains
As the IoT rapidly advances, traditional printed labels are evolving into intelligent “smart tags.” No longer merely adhesive printings, these tags embed chips and sensor modules to enable real-time product tracking, authentication, and even consumer interaction. This technological shift is reshaping operations across logistics, retail, healthcare, and manufacturing.
Headline
Market News
Accelerated Medical Transformation: Challenges Solved? Unveiling the New Market Blueprint for 2025
In 2025, the global healthcare industry is entering a critical period of rapid technological innovation and profound market transformation. While facing multiple challenges such as labor shortages, rising costs, and policy uncertainties, the industry is also embracing growth opportunities driven by cutting-edge technologies like artificial intelligence, regenerative medicine, and bioprinting. With continued active investment in health tech, the medical market is demonstrating strong resilience, painting a new blueprint for the future.
Headline
Market News
Can CNC Technology Make Food Processing Faster and Safer?
The core requirements for food processing equipment lie in safety, efficiency, and durability. CNC (Computer Numerical Control) technology, with its precision and automation advantages, has become a key enabler in the manufacturing of slicers, packaging machines, mixers, and other equipment. With the global food processing equipment market projected to grow from USD 55 billion in 2023 to USD 75 billion by 2030 (a CAGR of approximately 4.5%), CNC is driving the industry toward greater intelligence and efficiency.
Headline
Market News
Do You Know the Manufacturing Secrets Behind Sports Equipment?
In the sports equipment industry, CNC (Computer Numerical Control) machines are the key driver for high product performance, extended durability, and enhanced market competitiveness. From golf clubs to bicycle frames, CNC machining combines high precision and flexibility, not only meeting the strict quality demands of professional athletes but also providing efficient and customizable manufacturing solutions for buyers.
Headline
Market News
Supply Chain Restructuring under the US–China Tech War: How Machine Tools Empower Autonomous Electronics Manufacturing
Globalized supply chains were originally driven by an “efficiency-first” mindset. However, in the context of the US–China tech competition, geopolitical tensions, export controls, and technology embargoes have placed multiple pressures on the electronics industry, including chip restrictions, equipment limitations, and trade barriers. Traditional production models, which rely on concentration in a single region, have become increasingly unsustainable. These developments have prompted companies to recognize that, beyond cost reduction, ensuring supply chain stability and control over autonomy is now far more critical.
Headline
Market News
Nurturing Talent in Taiwan's Manufacturing Sector: The Government's Strategy for a Competitive Future
The global high-tech sector is at a critical crossroads, facing the dual challenges of rapid technological iteration and a severe talent shortage. In Taiwan, a world-renowned hub for precision manufacturing, the situation is no different. As the end-user market demands higher precision processing and the wave of smart manufacturing and digital transformation sweeps in, the government has long recognized that nurturing talent is paramount to maintaining the nation's industrial competitiveness.
Headline
Market News
2025 Continued Innovation in Healthcare Driving Market Growth
In 2025, the global healthcare industry is experiencing a profound revolution, fueled by the deep integration of digital technology and AI. As medical service models rapidly evolve, institutions are adopting innovations to enhance diagnostic accuracy, treatment efficiency, and patient experience while also controlling costs. This article analyzes the key drivers, applications, and future challenges in the 2025 healthcare market, offering a comprehensive insight into industry trends and growth potential.
Headline
Market News
Elevating Drone Manufacturing: The Machining Advantages of CNC Machines
With the rapid expansion of the unmanned aerial vehicle (UAV) industry, CNC (Computer Numerical Control) machines play an indispensable role in precision manufacturing. According to market research firm Grand View Research, the global drone market is expected to grow from approximately USD 40 billion in 2023 to USD 90 billion by 2030 a remarkable trajectory. CNC machining’s high-precision capabilities, from structural components and electronic parts to critical modules, can directly impact drone performance while linking the entire supply chain from raw materials to global trade.
Headline
Market News
U.S.–China Trade War and the Russia–Ukraine Conflict: Challenges and Adjustments in the Textile Raw Material Supply Chain
The textile industry has always been one of the most globalized sectors, with raw materials often crossing multiple borders before reaching the apparel market. However, in recent years, growing geopolitical uncertainties—most notably the U.S.–China trade war and the Russia–Ukraine conflict—have created unprecedented challenges for textile supply chains. Trade frictions between the U.S. and China have restricted exports of cotton and fabrics, forcing brands to reassess sourcing strategies. Meanwhile, the Russia–Ukraine war has driven up energy and chemical raw material prices, indirectly raising costs for synthetic fibers such as polyester and nylon. Together, these factors are pushing the global textile industry to rethink supply chain resilience and its future trajectory.
Headline
Market News
From Policy to Production: How Smart Machine Monitoring is Reshaping Global Factories
In the global manufacturing industry’s shift toward Industry 4.0, smart upgrades are no longer optional—they’re essential for staying competitive. At the core of this transformation is the conversion of traditional factories into data-driven, smart ecosystems. This complex undertaking isn’t something companies can tackle alone. A series of policies and international collaborations, from governments’ high-level strategies to industry alliances’ communication standards, are paving the way for smart manufacturing. This allows technologies like remote monitoring and predictive maintenance to move from blueprints to reality more quickly, fundamentally changing how factories operate worldwide.
Headline
Market News
Aerospace Supply Chains Move to India: Growth and Opportunities in a Rising Market
Amid constrained Western supply chains and rising geopolitical risks, aerospace giants like Airbus and Rolls-Royce are increasingly sourcing components from India, driving the local industry from basic manufacturing into design, engineering, and systems integration. Backed by low-cost labor, supportive policies, and improving infrastructure, India is rapidly emerging as a global aerospace hotspot, aiming to capture 10% of the market in the next decade. Simultaneously, Taiwanese firms are responding to the “China+1” strategy by boosting investments in India and planning industrial parks in Telangana to diversify risk and seize new opportunities. By combining India’s cost and workforce advantages with Taiwan’s precision manufacturing and certification expertise, the two sides are poised to build a cost-competitive, high-value aerospace supply ecosystem—creating a win-win scenario in the global industry.
Agree