The Role of Fog Computing in Enhancing the Industrial Internet of Things
Trend

The Role of Fog Computing in Enhancing the Industrial Internet of Things

After "Cloud Computing", a new term "Fog Computing" has been added in recent years. It mainly comes from the phrase "fog is a cloud closer to the ground".
Published: Jun 09, 2023
The Role of Fog Computing in Enhancing the Industrial Internet of Things

What Is Fog Computing?

For the development of IoT technology and applications, more and more intelligent networking devices are connected to the network. Under the basic model of cloud computing, most of them have only very weak computing power. Therefore, related computing resources, such as storage or computing power, must be accessed from the cloud through the network. With the rapid growth of demand, the burden on the cloud is getting heavier and heavier. After all, it is a centralized resource. Secondly, the cloud is relatively far from the end, and these smart devices have a long delay when accessing resources on the cloud.

Fog computing is designed for data-intensive, high-performance computing, and high-risk environments. Fog is an emerging distributed architecture that bridges the cloud and the devices connected to it, without the need to establish a permanent cloud connection between the site and the factory. By selectively transferring computing, storage, communication, and control, fog computing can make decisions close to IoT sensors and actuators (this is data generation and use). It is a useful supplement to cloud computing, not a complete replacement so that IIoT can be used efficiently, economically, safely, and constructively in a manufacturing environment.

Fog is sometimes called edge computing, but there are key differences between them. Fog is a superset of edge functions. The fog architecture combines resources and data sources with a hierarchical structure that resides on north-south edge devices (cloud to sensors) and east-west edge devices (function-to-function or point-to-point) for maximum efficiency. Edge computing is often limited to a small number of north and south layers, usually related to simple protocol gateway functions.

Therefore, under these considerations, there is fog-end computing, which means that computing resources are decentralized to some extent and deployed closer to users.
Therefore, fog computing is not a substitute for cloud computing, but as an extension of cloud computing.

Basically, the combination of the two is to hierarchize the allocation of computing resources. The top layer is the cloud, the middle layer is the fog, and the bottom layer is the client-side connected device. Therefore, under this model, a certain percentage of computing resources that were originally concentrated in the cloud will be reduced to the fog end. When the device wants to access resources, it will be accessed as close as possible to the fog end.

In this way, because the fog end is closer to the ground, the access speed is faster. Secondly, even if frequent and large amounts of communication are required, a large amount of network traffic will only be scattered between the ground and the fog, and will not communicate. Throwing into the cloud reduces the burden on the cloud.

How to Help the Industrial Internet of Things?

Factories can make full use of the data flow of the fog node layer to make the connection between factories better. Fog nodes located at a lower level in the overall structure, such as a single computer, can be directly connected to local sensors and actuators, so as to be able to analyze data in time and explain abnormal operating conditions. If it has been authorized, it can also respond and compensate for problems or solve problems autonomously. In addition, fog nodes can also send appropriate service requests for higher-level fog hierarchies to providers with better technical resources, machine learning capabilities, or maintenance services.

If the operating conditions require real-time decision-making, such as shutting down the equipment before it is damaged or adjusting key process parameters, the fog node can provide millisecond delay analysis and operation. Manufacturers do not have to use cloud data center routing to implement this real-time decision. This helps avoid potential delay issues, queue delays, or network/server downtime, and these delays can cause industrial accidents, reduce production efficiency, or product quality.

In the factory, the fog nodes located at a higher level can obtain a broader perspective on industrial processes. They can add more functions, such as the visualization of production line operations, monitoring the status of malfunctioning machines, adjusting production parameters, modifying production plans, ordering supplies, and sending alerts to the right people.

Fog computing can help IIoT and smart factories bring various benefits, including productivity, product quality, and safety. IIoT can provide a technical route for clean and green manufacturing. As a result, the manufacturing industry will achieve unprecedented customer-level collaboration and achieve mass customization and large-scale personalized customization. The potential opportunities to take full advantage of all aspects of the Smart Factory are endless.

Published by Jun 09, 2023 Source :kknews Source :medium Source :ithome

Further reading

You might also be interested in ...

Headline
Trend
Refining the Essence: Three Fundamental Pillars of Smart Industrial Manufacturing
The conventional manufacturing sector stands at a crossroads necessitating a shift towards intelligent transformation. By incorporating advanced production technologies, a new era of industrial development is inaugurated.
Headline
Trend
The Role of Artificial Intelligence in Autonomous Vehicles
Utilizing machine learning and neural networks, artificial intelligence (AI) plays a crucial role in enabling the autonomous operation of self-driving cars. These vehicles leverage a combination of sensors, cameras, radar, and AI to navigate between destinations without the need for human intervention. For a car to be considered fully autonomous, it should demonstrate the capability to independently navigate predetermined routes without human input, even on roads that have not been specifically modified for autonomous vehicle use.
Headline
Trend
Worldwide Bicycle and Electric Bicycle Market Overview
The global increase in environmental consciousness has resulted in a shift for bicycles from primarily sporting and recreational roles to becoming popular modes of commuting. Notably, the rising adoption of electric bicycles is driven by factors such as an aging population, contributing to a significant upsurge in the global production of electric bicycles in recent years.
Headline
Trend
Opportunities and Trends in the Application of 5G in Smart Grids
In recent years, developed nations have initiated comprehensive power grid upgrade initiatives. In line with its commitment to energy conservation and carbon reduction policies, Taiwan has advanced the implementation of Automated Metering Infrastructure (AMI) as part of its national energy-saving strategy. The plan encompasses the integration of 4G/5G and other communication industries. The noteworthy progress in the development and integration of smart grid applications with 5G communication technology represents a significant industrial advancement deserving of attention.
Headline
Trend
Confronting the Era of Digital Advancement, Facial Recognition Technology Has Enhanced
Recently, there has been widespread discussion about Artificial Intelligence, Machine Learning, Deep Learning, and Big Data. These technologies find application in various domains such as the financial industry, logistics, business analysis, unmanned vehicles, computer vision, natural language processing, and more, permeating every facet of daily life.
Headline
Trend
The Arrival of 5G Technology Marks a Shift in Business Transformation, Redefining Innovations in the Manufacturing Sector
5G is recognized as a key enabler of Industry 4.0. With its high network speed and low power consumption, 5G facilitates the connectivity of every sensor in the upcoming unmanned factory to the cloud. This connectivity allows for the extraction of data for analysis, ultimately fueling advancements in artificial intelligence.
Headline
Trend
How Can Humans Collaborate with Robots in a Work Environment?
The integration of collaborative robots into production has become a pivotal element in the manufacturing chain, enhancing overall production efficiency. These compact collaborative industrial robots are designed to operate in confined spaces, addressing challenges posed by limited working spaces.
Headline
Trend
Can 3D Printing Be Applied in the Die and Mold Industry?
As the utilization of 3D printing expands across the broader spectrum of industrial manufacturing, the significance of this technology extends beyond its role as a rapid prototyping tool. This article provides an overview of the applications of 3D printing in the fabrication of molds and dies for processes such as injection molding and die casting.
Headline
Trend
Tooling 4.0: Bridging Industry 4.0 with Mold Manufacturing for the Future
Are you familiar with the latest terminology related to Tooling 4.0? In this article, we'll offer an overview and examples that can help manufacturers understand and align with this evolving concept. Tooling 4.0 revolves around leveraging technology to transform 'inefficient' products into 'intelligent' ones.
Headline
Trend
Industry 4.0 Propels the Global Industrial Market Towards Automation
In the present day, conventional industries are blending Internet of Things technology to drive the evolution of Industry 4.0 and the advancement of smart manufacturing.
Headline
Trend
The Essence of Additive Manufacturing
Additive manufacturing is playing an increasingly important role in the manufacturing industry and is mainly used in toolmaking and prototype construction.
Headline
Trend
Exploring the Concept of Advanced Manufacturing
Advanced manufacturing is the use of innovative technologies to improve products or production processes. Related technologies are called "advanced", "innovative" or "frontier". Advanced manufacturing technology is gradually maturing, integrating innovative technology into products and manufacturing processes to enhance competitiveness and increase value.
Agree