The 5G Era Is Coming, and What Does 6G Mean?
Trend

The 5G Era Is Coming, and What Does 6G Mean?

The 6G technology after 5G has already been studied by existing countries. Relative to the revolutionary change of 5G, 6G should be the perfection, strengthening, and further optimization and promotion of 5G technology.
Published: Jun 10, 2020
The 5G Era Is Coming, and What Does 6G Mean?

This is the same as the evolution from 3G to 4G. 3G is moving from the era of digital communications to the era of data communications. Although 2G also has digital communication capabilities, it mainly sends SMS and caller ID. Internet access is a very secondary capability. The amount of data used by users is also very small. The core network and billing system of telecommunications companies are based on voice. After entering 3G, although the voice is still very important, the network is no longer voice-centric. Data services have become an important business. The core network and billing system are data-centric systems. From 2G to 3G, it is a revolution for the communication network and a completely new transformation.

However, objectively speaking, the network speed of 3G is still relatively slow, and 4G has greatly improved the network speed, which has greatly improved the user experience. We can understand 4G as technological evolution, but the network speed has increased, and its infrastructure and basic capabilities have not changed revolutionarily compared to 3G. Even a large number of 4G services are gradually built based on 3G. However, with the advent of 4G, the efficiency of these services has been greatly improved, ushering in the outbreak period.

5G has made more demands in technology, with faster speed, lower power consumption, and lower latency. Compared with the 4G network, 5G adjusts and rebuilds the entire network structure, and the core network, management, and billing system will also undergo tremendous changes. The business formed based on 5G is no longer limited to the transmission of information, but a smart Internet. This network integrates mobile Internet, smart sensing, big data, and smart learning to form new capabilities, which can be said to be a revolutionary change. The 5G revolution embodies huge changes in technology, management, billing, business models, business models, and business forms.

So, can 5G realize all visions and achieve perfect feelings and experiences? Not 5G also undergoes a long-term evolution process, and gradually improves from the network, management system, and other aspects. Therefore, in this sense, 6G will not undergo technological revolution again and make revolutionary changes in the system, but based on 5G, according to the actual operating situation, new problems are found, or the deficiencies of 5G are improved.

6G will further integrate the network

At present, the mobile communication network and the satellite network are two independent networks, which operate independently and cannot play a role of integration and supplementation. 6G may have a trend of integration between heaven and earth. A network can not only provide land coverage through ground base stations but also jointly network through low-orbit satellites and high-orbit satellites. On the ground, through many repeaters, small The base station provides deep coverage. The integration of the network can take into account the surface and the point. Through high-orbit satellites and low-orbit satellites, the surface is guaranteed to exist in any corner of the earth. At the same time, in densely populated areas or the current network is not enough Dense areas are covered deeply and can go underground, such as subways, tunnels, parking lots, mines, and other special places with poor signals.

In addition to being able to be covered at a certain depth below the surface, underwater communication should also be possible in the 6G era and become part of the entire network coverage system. For example, in offshore, rivers, and lakes, water quality, underwater plants, underwater organisms, underwater culture products, water temperature changes, nutrient content in water, pollutant content, displacement of underwater dams, etc. are all required. Monitoring and underwater monitoring with network coverage will greatly improve the monitoring and management capabilities. 6G can also play an important role in collecting ocean-related data, monitoring environmental pollution, climate change, seafloor anomalies, seismic volcanic activity, exploring seafloor targets, and transmitting underwater long-distance images, and even in the military field. Obviously, in the 4G and 5G eras, underwater network coverage is not considered at all, and planning and breakthroughs should be made in the 6G era.

Specifically, underwater wireless communication can use various technologies such as underwater electromagnetic wave communication, underwater acoustic communication, and underwater quantum communication. If the frequency is higher than 100KHz, it can be radiated into the space Radiofrequency (RF), there will be a greater chance in underwater wireless communication. Through the improvement of technical capabilities, high-speed transmission of data of more than 100Kbps becomes possible. It can also resist the influence of noise, achieve relatively low latency and low power consumption, and have higher security. Radiofrequency communication may become an important choice for underwater wireless communication. Besides, underwater laser communication and lower neutrino communication will also become widely-received technologies, but these technologies still need to be continuously improved.

An important step for 6G is to use satellites, ground stations, small base stations, underwater base stations, and other technologies and methods to connect the sky, ground, underground, and water into a whole so that the network is truly ubiquitous. For the communications industry, there are still no small challenges to realize these capabilities. If these networks are to be integrated into a whole and form a new business model, there are still many areas that must be improved and perfected.

Use more spectrum to improve efficiency and capabilities

To achieve greater bandwidth, more spectrum must be used for mobile communications. In the 5G era, 800/900MHz is used in the IoT frequency band of the Internet of Things. The spectrum from 3.4GHz to 3.6GHz and 20GHz to 60GHz are all considered as 5G, which greatly increases the usable spectrum and improves network capacity and bandwidth.

6G networks require greater bandwidth. The peak speed of 6G will reach 100Gbps, while the peak speed of 5G is only 20Gbps, and the single-channel bandwidth will also reach 1GHz, while the single-channel bandwidth of 5G is the only 100MHz, through multiple 1GHz Bandwidth is combined to achieve 100Gbps speed. To achieve the single-channel 1GHz bandwidth, the spectrum of the lower frequency band is not enough to support. This requires more spectrum to be used for mobile communications. Millimeter-wave has been adopted in the 5G era. It can be expected that in the 6G era Terahertz (THz) waves will enter people's vision.

The wavelength of the megahertz wave is 3μm~3000μm, and the frequency is 0.1THz~10THz. It is an electromagnetic wave between microwave and lightwave. It has the advantages of microwave communication and lightwave communication, which gives it a difference from other electromagnetic waves to a certain extent. The characteristics, that is, high transmission speed, large capacity, strong directionality, high security, and strong penetration, etc.

The higher the frequency, the greater the communication capacity. This is the basic principle of the communication field. The frequency of the megahertz wave is one to four orders of magnitude higher than the currently used microwaves. It can provide wireless transmission speeds of more than 10Gbps-this is a height that microwaves cannot reach-and it is more effective in solving the problem of message transmission constrained by bandwidth Big benefits.

Megahertz waves are used for long-distance transmission. It is difficult to have a good effect, but today's communication network is a backbone transmission network constructed by an optical fiber network. The base station is used to extend the optical fiber network to form a mobile network. The user can switch between different base stations at will, so that he can not drop the line anytime and anywhere, and can support high speed. The future mobile communication network is a large-scale cellular network, which needs to be covered in a long-distance and large-scale, and the cellular will become smaller and smaller. The future network will be under a huge fiber-optic network, through many small base stations with the family as the main unit, to form an ultra-high density, ultra-high-speed, densely deployed network system. In this system, the high-speed transmission is required in densely populated areas. Megahertz technology can use high speed, large capacity, and high penetration to realize the deployment of office and home environments.

The higher the electromagnetic wave frequency band, the worse the ability to diffract and penetrate. Millimeter waves are difficult to penetrate. Therefore, in cities, whether it is an office or home environment deployment, there are major problems. Lightwave has better penetration, and it does not need to compete with other industries for spectrum, so it can achieve a large bandwidth. Because of these characteristics, megahertz technology is particularly suitable for deployment in office and home environments in densely populated urban areas. The distance between these places is not a problem, but bandwidth and penetration are big problems.

A communication network is more intelligent

In the future, AI functions will be increasingly introduced into communication networks, turning it into a smart network.

In the traditional communication network, the trinity of a pipeline, management, and business is provided by the telecommunications company, but the telecommunications company only carries one service of voice, and the management is also very simple. In the 5G era, the network will become more complicated. If we build multiple communication networks, that is, build multiple pipeline systems, not only will social costs be greatly increased, but social resources will also be insufficient. Give a simple example. There are multiple systems in the city such as electricity, telecommunications, sewage, etc., all of which require pipelines. If each system builds its pipeline, it is not only costly but also very difficult to manage, which requires a pipeline to share resources.

With the development of 5G, the communication network is no longer a network for voice communication between humans, not only a network that can provide Internet services, but also a large number of Internet of Things services, city management services, and smart transportation services. , Smart home business and the security, priority, and resource allocation of different services are different. Such a network must establish a powerful intelligent management model to intelligently manage different businesses and users. Based on this, it is necessary to integrate AI technology into the network to identify different users, user behaviors and terminals, and to perform resource allocation and tariff management on this basis.

A question worth discussing is that the future 6G network is a complex network system with extremely high resource requirements. So do we need to establish several networks in a country? On the one hand, resources are very limited; on the other hand, mutual interference between networks is also a big problem. When the network penetrates every corner of the society, if a corner covers three or more networks, not only will resources be wasted, but the quality of the network will also be affected.

Based on this, the 6G era should explore the construction of only one fully-covered network in a country. In this way, not only can resources be fully utilized, the waste of configuring several sets of equipment in each place can be reduced, but the cost of site rental can also be greatly reduced, And avoid interference between networks. Such a network has higher quality, uses fewer resources, and has less impact on users.

Of course, it is impossible to merge multiple operators into one, and there is no competition at all. This requires the separation of the network and the business: multiple operators use the same network to provide their services. The competitiveness of telecommunications companies is mainly reflected in their capabilities in management, platform, R&D, operation, service, and maintenance. Because of their different capabilities, the level of service provided is different, and users have different choices.

Telecommunication companies establish their business management platform, billing platform, charging platform, business support platform (BSS) and customer service platform on the network, and then provide different products and services to individual users, enterprise users, and institutional users. Users can use one ID for identification and use multiple different services at the same time. Users do not need to register an ID for each service, that is, one ID, multiple services, and a fee.

The network can also use AI technology for user identification, and then provide different network resources and security guarantees according to different user identities and terminals.

At that time, a country has only one communication network, and multiple network capabilities are stacked at multiple levels. Telecom companies are no longer fighting for network capabilities, but for R&D, management, operation, and service capabilities. These should be the entire network in the 6G era. New changes in management.

Published by Jun 10, 2020 Source :bnext

Further reading

You might also be interested in ...

Headline
Trend
Modern Scaffolding: A Guide to Revolutionizing Construction Safety & Efficiency
From the construction of the ancient pyramids of Egypt to the rise of modern skyscrapers, one crucial temporary structure has always played the role of an unsung hero: scaffolding. This support system not only provides a safe foothold for workers but has also continuously evolved from a simple framework into a highly efficient, precise, and intelligent engineering system.
Headline
Trend
The Connection Between Medical Device Manufacturing and Machine Tools
The medical industry is experiencing rapid growth, driven by an aging population, rising chronic diseases, and technological advancements. The demand for high-precision medical devices is increasing, requiring manufacturing processes that ensure safety, reliability, and performance. Machine tools play a critical role in meeting these stringent requirements, enabling the production of complex medical instruments with exceptional accuracy.
Headline
Trend
Smart Manufacturing in Printing: A New Era of Efficiency, Precision, and Sustainability
For over a century, the printing industry has been regarded as a relatively mature and stable sector. However, as market demand diversifies and the wave of digitalization accelerates, printing is undergoing a profound transformation. In the era of Industry 4.0, intelligence and automation have become the keywords of competitiveness. From AI (Artificial Intelligence) to IoT (Internet of Things), and the rise of post-press automation, these technologies are quietly reshaping every step of the printing process. Printing is no longer just about reproducing text and images; it is evolving into an era of “smart manufacturing” that is more efficient, precise, and environmentally friendly.
Headline
Trend
Industrial Applications of CNC in the Robotic Arm Industry
CNC technology is an automated system that precisely controls machinery through computer programs, widely applied across various manufacturing sectors. The robotic arm industry encompasses both industrial uses (such as assembly and welding) and service applications (such as latte art or maintenance). In Japan, for instance, people with disabilities can remotely operate robots from home for work. This industry is visibly experiencing rapid growth. According to 2025 market data, the global robotics market is expected to reach USD 50.8 billion, with service robots accounting for USD 40.58 billion, demonstrating strong growth potential. The application of CNC in the robotic arm industry extends beyond component manufacturing to control systems and versatile task execution.
Headline
Trend
From Solar to Wind: The Heart of Green Energy
When discussing the energy transition, attention often falls on the surface area of solar panels, the blades of wind turbines, or the massive structures of nuclear power plants. Yet behind these world-changing energy systems, the critical components that drive solar, wind, and nuclear operations rely heavily on precision-manufactured CNC machines. Often hailed as the “brains of manufacturing,” these machines, with micron-level precision and highly automated capabilities, serve as the invisible engine powering technological breakthroughs and future innovations in the energy sector.
Headline
Trend
Seeing the Future in Wood: How CNC Technology is Transforming the Woodworking Industry
Traditional woodworking has long been synonymous with craftsmanship. In the past, the meticulous shaping of wood required artisans wielding hand planes, relying on time and experience to perfect every piece. Today, however, we live in an era of automation, and CNC (Computer Numerical Control) machinery has become the backbone of modern woodworking. Through precise computer control and high-speed processing, CNC enables wood cutting, carving, and complex shaping with exceptional accuracy and consistency. The woodworking industry is entering a new phase centered around digital control, ushering in higher quality and greater value-added production.
Headline
Trend
The “Comeback” of Print: Rediscovering Vitality in the Age of Scattered Attention
Driven by the wave of digitalization, we have long grown accustomed to a daily life where information constantly “scrolls” into our view. E-books, online news platforms, and short videos occupy our fragmented time, while print publications were once seen as relics destined to fade away. Yet history is often full of reversals—just as digital media reached its peak in speed and density, print quietly returned to the stage, even becoming an “irreplaceable choice” for certain audiences. This phenomenon not only challenges our linear imagination of media evolution but also reveals deeper psychological needs behind human reading behaviors.
Headline
Trend
Next-Gen Aviation: How Advanced Materials Are Revolutionizing Aircraft
As technology advances, the design philosophy behind modern passenger aircraft is undergoing a profound transformation. The evolution of aircraft materials is no longer just about reducing weight; it's a comprehensive revolution encompassing intelligence, safety, and sustainability. From groundbreaking composites to self-diagnosing smart sensors and manufacturing techniques built on a circular economy, future aircraft won't just be cold machines. They’ll be intelligent, self-aware, safer, and more eco-friendly flying bodies.
Headline
Trend
Optimizing IoT: From Connected Devices to the Future of the Internet of Things
The Internet of Things (IoT) is far more than just connecting your phone to Wi-Fi or making your appliances smart. It’s a massive intelligent ecosystem where everyday "things" can network, communicate, and share information. Simply put, IoT is a network of smart devices and sensors that can exchange data. In this hyper-intelligent ecosystem, every machine, every sensor, and even every piece of clothing seems to have a voice, sharing real-time data and working together. The IoT is changing our world and driving the next wave of technological revolution.
Headline
Trend
Overview of the Aerospace Industry Chain
The aerospace industry, as a cornerstone of modern high-tech manufacturing, encompasses civil aviation, defense, and space exploration, while representing a high degree of integration in materials science, precision machining, and intelligent manufacturing. The entire industry chain spans from upstream development and supply of high-performance materials, through midstream precision component manufacturing and modular assembly, to downstream final assembly, flight operations, and maintenance. Each segment imposes stringent requirements on safety, reliability, and performance. With the continuous expansion of the global aviation market and the rapid development of carbon-neutral initiatives, smart manufacturing, and digital technologies, the aerospace industry chain has become highly complex and interdependent.
Headline
Trend
Global Energy Industry Chain Structure and Development Trends
The energy industry serves as the core driving force of the global economy, with a vast and complex industrial chain that encompasses the entire process from resource development and energy conversion to end-use applications. Driven by climate change, energy security, and technological innovation, traditional fossil fuels and emerging renewable energy sources are increasingly intertwined, gradually reshaping the global energy landscape. In this context, the energy industry chain is not merely an extension of supply chain management but also a critical nexus connecting policy, finance, technology, and markets. A comprehensive understanding of its upstream and downstream structure, as well as its development trends, has become essential for evaluating energy transition and industrial competitiveness.
Headline
Trend
Smart Healthcare Industry Chain Analysis: Core Segments and Future Trends in Medical Device Manufacturing
Smart Healthcare has emerged as a key driver of transformation in the global medical industry. At its core, it integrates medical devices, information technology, and data analytics to enhance diagnostic accuracy, treatment efficiency, and real-time health management. The medical device manufacturing value chain not only covers the design and production of precision equipment but also involves sensing technologies, materials engineering, hardware–software integration, and clinical applications—forming a highly specialized and cross-disciplinary ecosystem.
Agree