What Is Additive Manufacturing?
Trend

What Is Additive Manufacturing?

Additive manufacturing is playing an increasingly important role in the manufacturing industry and is mainly used in toolmaking and prototype construction.
Published: Jul 03, 2020
What Is Additive Manufacturing?

Although the terms "3D printing" and "rapid prototyping" are casually used to discuss additive manufacturing, each process is actually a subset of additive manufacturing.

Additive Manufacturing: Definition and Explanation

This manufacturing process is used above all in toolmaking (rapid tooling), in the manufacturing of end products (rapid manufacturing), and in prototype production (rapid prototyping). How can additive manufacturing be classified in terms of manufacturing technologies? Manufacturing technologies are generally based on three pillars:

  • Subtractive Processes (something is removed): Milling, lathing, etc.
  • Formative Processes (a material is redesigned): Casting, forging, etc.
  • Additive Processes (something is added): 3D printing, etc.
Additive manufacturing describes processes in which the part to be produced is constructed by the addition of material. The construction is carried out in layers. This involves the following two aspects:

  1. The component is made up of different layers. Usually the process is carried out from bottom to top. Simply put, it uses the same principle as for the building of sand castles: A new layer is applied to a building platform in order to build a tower.
  2. Different processes take place repeatedly in layers (i.e. one after the other). This involves the feeding of the material, the melting (shaping), and finally the bonding with the previous layers. These steps, called the process chain, are the same regardless of which machine is used for additive manufacturing. The only difference is the way the individual layers are created.

Additive manufacturing thus enables the creation of 3D objects. To make this possible, the machine first requires the 3D design specifications ("three-dimensional CAD") of the part to be produced. The respective data set consists of the outline data (length x, height y), the number of layers (z) and the layer thickness (dz). It is the task of the corresponding computer program to divide the model into suitable layers. The software then transmits the data set to the machine in the form of production instructions, e.g. the printer for 3D metal printing.

How Does It Work?

In almost every case, additive manufacturing a uses a powder bed. This means that a powdered material is fed into a bed where it is further processed. In 3D metal printing, for example, a metal (or several metals) is reduced to a powder before it is fed into the chamber and rebuilt. There are four common methods of producing the layers from the powder:

  • Selective Laser Sintering (SLS)
  • Selective Laser Melting (SLM)
  • Electronic Beam Melting (EMD/ EBM)
  • Binder Jetting
  1. SLS: Sintering involves the heating of materials under pressure, but not to the point of melting them. Laser technology makes it possible to create three-dimensional geometries by using undercuts. Usually CO2 or fiber lasers are used to do this.
  2. SLM: The powder is heated by a high-energy fiber laser and then cooled down. The shape of the components is created by the targeted deflection of the laser beams. SLM is being used more and more frequently than SLS. Since no pressure is applied, the objects exhibit a higher strength and are therefore more durable. This process is frequently used for 3D metal printing.
  3. EMD/ EBM: In principle, this method is similar to SLM. However, this application uses an electron beam and not a laser beam. The entire process takes place in a vacuum. EMD is faster than SLM, but less precise and has a lower maximum print volume. EMD machines have an average diameter of 350 mm and a height of 380mm. SLM machines are twice as large. EMD is particularly are an ideal additive manufacturing technology whenever small parts have to be produced in large quantities. This process is also often used for 3D metal printing.
  4. Binder Jetting: The powder is selectively deposited with a liquid binding agent to form the layers. This process has the advantage of allowing a very simple construction in different colors.

The term “additive manufacturing” references technologies that grow three-dimensional objects one superfine layer at a time. Each successive layer bonds to the preceding layer of melted or partially melted material. It is possible to use different substances for layering material, including metal powder, thermoplastics, ceramics, composites, glass and even edibles like chocolate.

Objects are digitally defined by computer-aided-design (CAD) software that is used to create .stl files that essentially "slice" the object into ultra-thin layers. This information guides the path of a nozzle or print head as it precisely deposits material upon the preceding layer. Or, a laser or electron beam selectively melts or partially melts in a bed of powdered material. As materials cool or are cured, they fuse together to form a three-dimensional object.

The journey from .stl file to 3D object is revolutionizing manufacturing. Gone are the intermediary steps, like the creation of molds or dies, that cost time and money.

While additive manufacturing seems new to many, it has actually been around for several decades. In the right applications, additive manufacturing delivers a perfect trifecta of improved performance, complex geometries and simplified fabrication. As a result, opportunities abound for those who actively embrace additive manufacturing.

Published by Jul 03, 2020 Source :ge Source :spotlightmetal.com

Further reading

You might also be interested in ...

Headline
Trend
Powering the Future: New Energy Vehicles, Sustainable Manufacturing, and Challenges
In the quest for a sustainable and eco-friendly future, the automotive industry is witnessing a profound transformation with the emergence of New Energy Vehicles. New Energy Vehicles, commonly known as NEVs, encompass a wide range of vehicles powered by alternative energy sources or a combination of traditional and renewable energy technologies. The implementation of sustainable manufacturing practices and collaboration among stakeholders presents challenges for NEV development as well as great potential for market growth.
Headline
Trend
Charging Ahead: Recharging Infrastructure in the Electric Vehicle Industry
As the electric vehicle (EV) revolution gains momentum worldwide, one of the critical pillars supporting this transition is the development of a robust recharging infrastructure network. This network plays a pivotal role in the widespread adoption of electric vehicles, ensuring convenience, accessibility, and sustainability for EV owners. Factors contributing to the acceptance of EVs and their associated recharging infrastructure include environmental awareness, advancements in battery technology, vehicle design, the expanding range of available EV models, and the implementation of government incentives to promote these new technologies.
Headline
Trend
Beyond Driving: The Future Landscape of Smart Automobile Technology
As the smart automotive industry embraces the shift toward sustainability, innovation, and connectivity, the manufacturing of Electric Automobiles (EVs) and New Energy Vehicles (NEVs) is shaping the future of transportation. Let’s explore some of the dynamic technology and key factors driving their evolution.
Headline
Trend
Driving Intelligence: The Evolution of Smart Automobile Technology
With the growing acceptance of New Electric Vehicles (NEVs), smart automobile technology has emerged as a fundamental force reshaping the automotive industry. From advanced connectivity and intelligent sensors to artificial intelligence (AI) and Internet of Things (IoT) integration, modern vehicles are evolving into sophisticated, interconnected systems. The manufacturing process of smart electric automobiles and NEVs requires the integration of these various technologies to fully realize benefits such as safety and efficiency, while also addressing evolving regulatory challenges and standards.
Headline
Trend
Riding Strong: Bicycle Frame Materials from Steel to Carbon Fiber
The choice of frame material is a critical decision for cyclists, influencing the performance, comfort, and overall riding experience of a bicycle. From the classic strength of steel to the lightweight versatility of carbon fiber, different materials offer unique properties and characteristics that cater to different riding styles, terrains, and budgets. A good understanding of bicycle frame materials, developing trends and advancements, will help in choosing the right frame material.
Headline
Trend
Electrifying Change: The Impact of E-Bikes on the Bicycle Industry
Electric bicycles, or e-bikes, are reshaping how people commute, exercise, and experience cycling. These innovative vehicles combine the convenience of traditional bicycles with electric propulsion, offering riders enhanced mobility and a more enjoyable riding experience. The impact of e-bikes on the bicycle industry, has brought about new market trends, regulatory challenges, environmental benefits, and future innovations.
Headline
Trend
Virtual Reality Headsets: Applications in the Modern World
In recent years, Virtual Reality (VR) headsets have captured the attention of tech enthusiasts, gamers, and businesses alike, promising immersive experiences that redefine the limits of digital interaction. The demand for VR headsets is expanding across multiple industries, from gaming to healthcare and education, finding many unique applications and benefits. Taiwan, a significant player in electronics manufacturing, has been pivotal in bringing many of these developments to market.
Headline
Trend
USB Flash Drives: Evolution, Trends, and Future Outlook
USB flash drives, commonly known as thumb drives, memory sticks, or USB sticks, are compact, versatile storage devices that have become indispensable tools for data storage, transfer, and backup. Introduced in the early 2000s, USB flash drives offered a groundbreaking solution for portable data storage, replacing older forms like floppy disks and rewritable CDs. Taiwan has played a unique role in the technology development and manufacturing behind these versatile storage devices.
Headline
Trend
Solar Panels with ESS: Sustainable Energy for a Resilient Future
Solar panels combined with Energy Storage Systems (ESS) not only harness the sun’s power but also ensure that energy is stored for future use, making it reliable and consistent. Solar panels with ESS play a critical role in providing energy resilience, reducing emissions, decreasing reliance on fossil fuels, and creating a sustainable future for both residential and commercial energy needs.
Headline
Trend
Vacuum Packaging Machines: Improving Packaging Technology
Vacuum packaging machines have revolutionized the food, pharmaceutical, and industrial packaging industries by providing an efficient means of extending shelf life, maintaining product quality, and improving packaging efficiency. From their early inception to the cutting-edge technologies used today, vacuum packaging machines have seen significant advancements in design and application.
Headline
Trend
Webcam Evolution, Technology, and Trends
Webcams have become an integral part of modern life, serving purposes ranging from casual video calls to professional content creation, security, and even healthcare. Originally designed for basic video communication, webcams have evolved significantly to include HD and even 4K video, specialized microphones, AI-enhanced features, and diverse applications across various industries.
Headline
Trend
Lithium-Ion Batteries: The Power Behind Modern Innovation
Lithium-ion (Li-ion) batteries provide the power for many devices and technologies that define modern life. From smartphones to electric vehicles (EVs), their lightweight and high-energy storage capabilities make them indispensable. Their underlying technology has led to the development of different types, unique applications, and a global manufacturing landscape that has seen a growing role in this dynamic industry.
Agree