What Is Advanced Manufacturing?
Trend

What Is Advanced Manufacturing?

Advanced manufacturing is the use of innovative technologies to improve products or production processes. Related technologies are called "advanced", "innovative" or "frontier". Advanced manufacturing technology is gradually maturing, integrating innovative technology into products and manufacturing processes to enhance competitiveness and increase value.
Published: Jun 30, 2020
What Is Advanced Manufacturing?

Compared with the traditional manufacturing industry, the advanced manufacturing industry refers to the manufacturing industry continuously absorbing high-tech achievements in electronic information, computers, machinery, materials, and modern management technologies, and applying these advanced manufacturing technologies to the research and development of manufacturing products. The whole process of design, manufacturing, online testing, marketing services, and management, to achieve high-quality, efficient, low-consumption, clean and flexible production, that is to achieve information, automation, intelligent, flexible, ecological production, to achieve better Economic benefits and market effects have driven the development and breakthrough of the manufacturing industry.

Advanced manufacturing is the use of innovative technologies and methods to improve the competitiveness of manufacturing

The purpose of advanced manufacturing is to enhance output, increase the added value of products, improve the quality of products, and consolidate the resilience and flexibility to the market. Shorten product R&D and time to market, reduce the unit quantity, material content, material inventory, and capital factories used.

Traditional manufacturing is based on the use of dedicated factories and production lines with little or no flexibility. Advanced manufacturing involves a variety of production methods. These methods can make full use of capital factories, and have higher efficiency, higher efficiency, and faster response speed. Although in some cases, the traditional dedicated method is still applicable (for example, predictable long-term production operation), but advanced manufacturing technology can meet the various production requirements and mass customization commonly encountered in the industry without excessive capital investment.

Advanced manufacturing covers all aspects of the value chain from concept to scrap and relies on information and communication technology (ICT) to integrate manufacturing and business activities into a seamless and efficient operation.

The technologies involved in advanced manufacturing can be divided into three main categories: efficient production, intelligent production, and effective organization.

  1. Efficient production involves the design, simulation, physical and computer modeling, advanced production technology, and control technology. The point is to do it simultaneously, not sequentially. Related production technologies include rapid prototyping, near-net forming, precision casting, machining, and joining technologies.
  2. Intelligent production involves the use of ICT in manufacturing and related logistics systems. As well as production-oriented smart machines, batteries, and production lines, this concept involves implementing systems through effective monitoring, maintenance, and repair strategies to extend service life and optimize the use of production facilities.
  3. Effective organization involves effective coordination and development of manufacturing resources. This includes material resources and knowledge. Related topics include virtual bidding and enterprises, shared facilities and resources, novel organizations, incubation units, knowledge management and transactions, and e-commerce. The focus in this area is to use technology to enhance the participation and capabilities of SMEs and large organizations.

Advanced manufacturing technology can increase productivity in many ways. They enable manufacturers in certain industries to provide customers with the option to "act in their way", thereby greatly increasing flexibility. Manufacturers can also produce products in small batches for specific customers, adjust production lines based on design changes, and even accelerate time to market by quickly generating prototypes.

Advanced manufacturing technology can also promote innovation by allowing manufacturers to create new products that conventional methods cannot produce cost-effectively. They also allow manufacturers to produce high-quality goods that meet the buyer's exact specifications. Moreover, these processes are environmentally friendly because they generally consume less raw materials and produce less waste. By exposing workers to fewer hazardous substances, they also increase safety. According to market observations, the following five technical tools have the greatest potential in the next few years to affect the manufacturing landscape and increase productivity.

  1. Autonomous robot.
    A new generation of automation systems connects industrial robots with control systems through information technology. New robots and automation systems equipped with sensors and standardized interfaces have begun to supplement (and in some cases eliminate) labor in many processes. This allows manufacturers to cost-effectively produce smaller-scale products and improve their ability to improve quality.
  2. Integrated Computing Materials Engineering (ICME).
    By creating a computer model of a product and simulating its performance before the product is manufactured, instead of building and testing multiple physical prototypes, engineers and designers can develop products better, faster, and cheaper.
  3. Digital manufacturing.
    Virtualization technology can be used to generate a complete digital factory that simulates the entire production process. Among other things, digital simulation can help engineers save time and money by optimizing factory layout, identifying and automatically correcting defects in each step of the production process, and modeling product quality and output. The entire assembly line can be copied to different locations at a relatively low cost.
  4. Industrial Internet and flexible automation.
    Manufacturing hardware can be linked together so that machines can communicate with each other and automatically adjust production based on data generated by sensors. They can "see" the supply chain.
  5. Additive manufacturing.
    The additive manufacturing process is commonly referred to as 3-D printing, which creates three-dimensional objects based on digital models by continuously depositing thin layers of material. Such processes have already been used for prototyping in certain industries, including aerospace, automotive parts, and basic consumer products. In the future, it is expected that these processes will be used to manufacture small batches of a product made of solid material, such as hollow balls without seams.

Five areas of work to consider in advanced manufacturing

  1. Medical device design and manufacturing- Over time, healthcare is an area that may grow, and the development and manufacture of medical devices contain opportunities.
  2. Sustainable manufacturing- In many countries of the world today, as demand grows and consumption increases, we need environmentally conscious solutions and require products to be discarded at the end of their useful lives. Sustainable manufacturing design is very valuable here-if engineers can find products, and even video game methods, these products will eventually become garbage or recycled. Even small appliances need to consider the need to do so.
  3. Control sensor development- Develop and utilize embedded sensors to enhance technological breakthroughs in autonomous vehicles and advanced safety.
  4. Welding Engineer- Welding engineers are in great demand, and laser and electron beam work are major areas of opportunity. The laser is expanding at a very high speed, and it must also be considered that fusion welding involves electron beams, friction, projection resistance, etc.
  5. Supply Chain Strategy- Learning how to qualify a supplier’s products is key, and the final result of the supply chain mechanism ultimately leads to the production of the final product with the correct specifications.
Published by Jun 30, 2020 Source :twi, Source :bcg, Source :asme

Further reading

You might also be interested in ...

Headline
Trend
The Application of Materials Science in Medical Device Manufacturing
In the field of medical device manufacturing, materials science plays a central role, directly impacting the safety, durability, and clinical performance of equipment. With the rapid development of smart healthcare and precision medicine, the demands for material performance have become increasingly stringent, particularly in the areas of biocompatibility, antimicrobial properties, and lightweight design.
Headline
Trend
Globalization and Steel-and-Glass Structures: Has the Architectural Divide Between East and West Disappeared?
In the West, concrete is a symbol of strength and efficiency, yet in the hands of a Japanese master, it can become a vehicle for Zen philosophy. In Asia, bamboo is revered as a sustainable material, but in the West, it is being redeveloped into a high-tech, eco-friendly solution. This article will delve into why architects from the East and West, even when faced with the same materials, can create two completely different architectural identities. The root of this lies in a fundamental difference in philosophy: the Eastern focus on living in harmony with nature and the Western drive to challenge physical limits.
Headline
Trend
Sewing Challenges in the Era of Sustainability: Balancing Durability and Eco-Friendliness
In discussions on sustainable textiles, sewing threads may seem insignificant, yet they play a crucial role. The material and production process of threads not only affect the durability of garments but also have long-term environmental impacts. In particular, under the influence of “fast fashion,” low-quality threads often break or fade easily, leading to garments being quickly discarded. In contrast, durable threads made from sustainable sources help extend the life cycle of clothing, reduce waste, and embody the concept of “slow fashion.”
Headline
Trend
Smart Breathing Masks: From Pandemic Essential to Intelligent Healthcare
The evolution of healthcare is a continuous response to the needs of the times. Breathing masks, a medical consumable we once paid little attention to, are a concrete example of this transformative wave. They are shifting from being a cold, professional tool to a gentle companion infused with intelligence and human-centered care.
Headline
Trend
Addressing Packaging Challenges Across Industries: Key Strategies for Food, Chemical, and Pharmaceutical Sectors
Do different industries face the same challenges? While the products of the food, chemical, and pharmaceutical industries vary greatly, their packaging lines share a common set of core challenges: how to ensure quality and safety while balancing high efficiency and regulatory compliance. As a result, customized packaging solutions have become the mainstream. Packaging machines are no longer single-function devices for "capping and filling" but rather comprehensive systems designed to meet the specific regulations of each industry.
Headline
Trend
The AI Revolution in Healthcare: Redefining the Future of Medicine
The explosive rise of artificial intelligence (AI) is ushering in an unprecedented transformation within the healthcare industry. No longer just a data analysis tool, AI has evolved into a smart assistant capable of deep collaboration with human experts and even operating independently. From diagnostic assistance to personalized treatment plans, AI is making healthcare more efficient, precise, and accessible to every patient.
Headline
Trend
Waterless Printing & Smart Tech: The New Eco-Standard for Label Printing
As global expectations for environmental protection rise, both consumers and brands are placing greater emphasis on the environmental impact of a product’s entire lifecycle—from production to recycling. Labels and stickers, as common products in the printing industry, have traditionally relied on large amounts of water, solvents, and energy in their production processes, creating a significant environmental burden. Today, sustainable printing is no longer an optional add-on but a key strategy for building brand trust and enhancing market competitiveness. Brands with clear eco-friendly initiatives are more likely to gain favor from both policymakers and the market, positioning themselves at the forefront of the global sustainability trend.
Headline
Trend
Modern Scaffolding: A Guide to Revolutionizing Construction Safety & Efficiency
From the construction of the ancient pyramids of Egypt to the rise of modern skyscrapers, one crucial temporary structure has always played the role of an unsung hero: scaffolding. This support system not only provides a safe foothold for workers but has also continuously evolved from a simple framework into a highly efficient, precise, and intelligent engineering system.
Headline
Trend
The Connection Between Medical Device Manufacturing and Machine Tools
The medical industry is experiencing rapid growth, driven by an aging population, rising chronic diseases, and technological advancements. The demand for high-precision medical devices is increasing, requiring manufacturing processes that ensure safety, reliability, and performance. Machine tools play a critical role in meeting these stringent requirements, enabling the production of complex medical instruments with exceptional accuracy.
Headline
Trend
Smart Manufacturing in Printing: A New Era of Efficiency, Precision, and Sustainability
For over a century, the printing industry has been regarded as a relatively mature and stable sector. However, as market demand diversifies and the wave of digitalization accelerates, printing is undergoing a profound transformation. In the era of Industry 4.0, intelligence and automation have become the keywords of competitiveness. From AI (Artificial Intelligence) to IoT (Internet of Things), and the rise of post-press automation, these technologies are quietly reshaping every step of the printing process. Printing is no longer just about reproducing text and images; it is evolving into an era of “smart manufacturing” that is more efficient, precise, and environmentally friendly.
Headline
Trend
Industrial Applications of CNC in the Robotic Arm Industry
CNC technology is an automated system that precisely controls machinery through computer programs, widely applied across various manufacturing sectors. The robotic arm industry encompasses both industrial uses (such as assembly and welding) and service applications (such as latte art or maintenance). In Japan, for instance, people with disabilities can remotely operate robots from home for work. This industry is visibly experiencing rapid growth. According to 2025 market data, the global robotics market is expected to reach USD 50.8 billion, with service robots accounting for USD 40.58 billion, demonstrating strong growth potential. The application of CNC in the robotic arm industry extends beyond component manufacturing to control systems and versatile task execution.
Headline
Trend
From Solar to Wind: The Heart of Green Energy
When discussing the energy transition, attention often falls on the surface area of solar panels, the blades of wind turbines, or the massive structures of nuclear power plants. Yet behind these world-changing energy systems, the critical components that drive solar, wind, and nuclear operations rely heavily on precision-manufactured CNC machines. Often hailed as the “brains of manufacturing,” these machines, with micron-level precision and highly automated capabilities, serve as the invisible engine powering technological breakthroughs and future innovations in the energy sector.
Agree