What Is Lean Manufacturing?
Knowledge

What Is Lean Manufacturing?

Lean production emphasizes customer-oriented, waste elimination, and continuous improvement as the core, and obtains the maximum benefit with the least input cost.
Published: Jun 19, 2020
What Is Lean Manufacturing?

What is lean manufacturing?

The main feature of lean production is to continuously design, develop, and produce new products of high quality and low cost and put them on the market. The management elements include the "master check" responsibility system, "concurrent engineering" (CE), "Just in Time production", "Pull" management, "total quality control (TQC)" and "Team Work". Lean production emphasizes that advanced technology and equipment can only play its full role through the innovation of enterprise management and the reorganization of organizational structure and the improvement of personnel quality. Therefore, it attaches great importance to the integration and effective use of technology, management, and manpower, and adopts parallel engineering to implement product development, production, and marketing to ensure that its products and services meet the needs of small batches and multiple varieties of markets, greatly improving the market competitiveness.

The core of lean production is not the progress of technology, but the innovation of management. It is an advanced management concept, to meet customer needs as the goal, emphasizing the participation of all employees and continuous improvement, through optimizing processes and excellence, to achieve standardized operations. Lean production is a modern large-scale production method. It guides production based on demand, real-time and on-time, Kanban operations, and realizes batch and customized production based on pipeline operations to meet the needs of market diversification. Lean production is a complete technical system. At the beginning of product conceptual design, it also considers many aspects such as structural design, production technology, and process flow to achieve exquisite design, sophisticated technology, and accurate procedures. Lean production is a scientific management method. The production process implements comprehensive quality management. Quality inspection and control are run through each process to ensure that the previous process provides qualified "products" for the next process. If quality problems are found, the operation team has the right to stop production until the problem is solved.

Lean production is through the changes in system structure, personnel organization, operation mode, market supply, and demand, etc., so that the production system can quickly adapt to the changing needs of users, and can make all useless and redundant things in the production process streamlined, and finally achieve A production management method with the best results in all aspects of production, including market supply and marketing.

The 7 wastes in Lean Manufacturing

Lean production is a process improvement system that "fully motivates authorized employees and systems to eliminate waste." Lean production methods are artificial. Anything that exceeds the absolute minimum of materials, machines, and human resources, space, time, and other resources required to increase the value of the product are wasted; these improvements are only sustainable if employees are fully motivated and authorized.

All activities of an enterprise can be divided into value-added and non-value-added activities. Generally, there are a large number of non-value-added activities in the enterprise, and any non-value-added activities are waste. Waste is everywhere, and there is no systematic way to eliminate waste. The lean production method divides waste into categories, which is convenient for people to identify waste, and adopt different systematic tools to eliminate different wastes. The lean production method divides waste into categories, which is convenient for people to identify waste, and adopt different systematic tools to eliminate different wastes.

From lean production, only seven wastes were originally defined. For the convenience of memory, some people use the English "TIM WOODS" to help memory. The eighth waste added later is the non-utilized Talent.

  1. Inventory
    Inventory waste is a waste of products that have not been sold. This includes the waste of inventory, waste of funds, waste of transportation inventory, waste of storage inventory space, waste of lighting inventory space, etc. Also, excessive waste of inventory can mask other waste generated during the production process.
    The environmental impact of waste of inventory includes packaging, work-in-process deterioration or damage, the need to replace damaged or expired inventory, and the consumption of inventory space energy (including heating or cooling).
  2. Waiting
    Waiting for waste refers to the time that one production step of the production line slows down or stops, causing the wait for the next production step. As a classic example, if one task in the production line takes longer than another task, the employees of the next task must wait for the previous step to complete before starting the task, which is a waste of waiting. This task, which requires more time, must become more efficient, other employees must be hired to help, or the workflow must be better coordinated or arranged to make up for the wasted time.
    The impact on the environment comes from the wasted labor and energy of lighting, heating, or cooling while waiting. Besides, due to inefficient work processes, the material may deteriorate and parts may be damaged.
  3. Defects
    Defective products refer to products that deviate from their design standards or deviate from customer expectations. Defective products must be replaced; they require paperwork and labor to handle it; they may lose customers; because these defective products are not used, if resources are placed on the defective products, it will cause waste. Besides, a defective product means that other levels of waste may result. Creating a more efficient production system can reduce defective products and put resources where the defective products can be resolved.
    The environmental costs of defective products include raw materials consumed, defective parts of products that need to be processed or recycled, additional space required to process defective products, and energy consumption for processing defective products.
  4. Overproduction
    Overproduction is the most serious waste. Overproduction will produce other types of waste and lead to excessive inventory. Too many unused products in inventory will have significant costs: storage, material waste, and excessive capital are wasted in unused inventory.
    Of course, depending on the products involved, overproduction may have very serious environmental impacts. Too much raw material is consumed; the product may deteriorate or expire, leading to the need to discard it; and, if the product involves hazardous substances, it will cause more hazardous substances to be wasted, resulting in additional emissions, additional costs of waste disposal, workers may Exposure to harmful substances and potential environmental problems caused by the harmful substances themselves.
  5. Motion
    Whether it is a human or a machine, the waste of these actions can be minimized. If we can achieve the same user value with fewer actions, then too many extra actions are a waste. Action may refer to anything, from workers bending over to pick up things on the floor, to extra wear and tear on the machine, which results in additional capital depreciation.
    Excessive waste of action brings many environmental costs. An obvious example is the waste of materials used to replace worn machines. Another possibility is the health of overburdened employees. If the movements can be controlled to a minimum, the workload of employees can be reduced.
  6. Transport
    Handling waste is moving materials from one location to another. Transportation itself does not add any added value to the product, so it is important to minimize these costs. This means keeping one factory as close as possible to another in the production line, or using more efficient methods to minimize transportation costs. Resources and time are spent on handling materials, hiring personnel for transportation, training, implementing safety precautions, and using additional space. Transportation may also cause a waste of waiting because part of the production line must wait for the material to arrive.
    The environmental costs of waiting include gas emissions, transport packaging used, possible damage to products on the way, and the risk of transporting hazardous materials.
  7. Over-processing
    Excessive processing waste refers to any unnecessary part of the manufacturing process. Scribing in areas that will never be seen, or adding features that will not be used are examples of over-processing. Essentially, it refers to adding value that exceeds customer demand.
    The impact on the environment involves parts, labor, and excessive raw materials consumed in production. Manufacturing over-processed products is a waste of time, energy, and emissions. Simplifying and improving efficiency can reduce these wastes and benefit the company and the environment.
  8. Non-utilized Talent
    Underutilized talent will waste talent in many organizations. Because operators are busy with the process every day, they can usually identify problems or opportunities that are not seen by employees or superiors, but may never ask the operator to provide their opinions. In addition to the tasks assigned to these people, they may also have some additional knowledge and skills. Self-recommendation? Or consider the talents of employees, not their labor.
Published by Jun 19, 2020 Source :kknews, Source :medium

Further reading

You might also be interested in ...

Headline
Knowledge
Smart Healthcare Uncovered:How AI Is Transforming Clinical Practice?
With the rapid rise of artificial intelligence (AI), the healthcare industry is undergoing a disruptive transformation. AI is significantly improving diagnostic accuracy and treatment efficiency while profoundly redefining healthcare professionals’ roles and patient experiences. A comprehensive understanding of the core technologies and clinical applications behind this transformation is essential for grasping the future trends and strategic directions of smart healthcare.
Headline
Knowledge
Principle and Applications of Laser Cutting Machines
As the global manufacturing industry advances toward higher precision and efficiency, laser cutting technology has become a key enabler of industrial upgrading. Compared with traditional shearing, stamping, and mechanical cutting, laser cutting offers non-contact processing, higher accuracy, and greater flexibility. It significantly improves productivity while reducing secondary finishing. Today, it is widely adopted in metalworking and increasingly applied in electronics, aerospace, medical, and architectural design industries.
Headline
Knowledge
Why Are High-Quality Cutting Fluids Critical for Machining Quality?
In CNC and metalworking, cutting fluid is no longer just a coolant—it plays a critical role by providing lubrication, chip removal, and corrosion protection. With the right formulation and concentration, it can reduce cutting heat, minimize friction, extend tool life, and maintain workpiece accuracy. High-pressure cooling further enhances efficiency in deep-hole and high-speed machining. The pairing of tool material with the proper cutting fluid is equally crucial; correct selection and maintenance ensure process stability, prolong equipment life, and improve the overall work environment. Cutting fluid has become an indispensable investment in modern precision manufacturing.
Headline
Knowledge
Introduction to Emerging Printing Technologies: Opening New Horizons for the Future of Printing
With rapid technological progress and increasingly diverse market demands, traditional printing techniques are no longer sufficient to meet modern industry’s requirements for precision, efficiency, and sustainability. As a result, emerging technologies such as UV printing, 3D printing, and Nanoimprint Lithography (NIL) have risen to prominence, offering solutions with higher precision, broader applications, and lower production costs. These innovations have already demonstrated value across packaging, advertising, healthcare, semiconductors, and construction. In the following sections, we will explore their technical features and real-world applications, highlighting the advantages and future potential of these cutting-edge printing technologies.
Headline
Knowledge
The Core Standard for Life-Critical Systems: A Complete Guide to IPC Classification
In high-risk fields such as medical, aerospace, and automotive, IPC classifications determine PCB reliability and safety. Class 3 represents the highest standard, requiring zero tolerance for defects, complete via filling, adequate copper annular rings, and rigorous inspections to ensure operation under extreme conditions, while Class 2 suits long-term use in non-critical equipment with minor cosmetic flaws allowed. Class 3’s strict criteria cover component placement, soldering, plating thickness, and environmental testing—adding cost and production time, but far outweighing the risks of failure in life- or safety-critical systems. Thus, defining high-risk equipment as Class 3 during design is essential, making IPC classification a core safeguard rather than an option.
Headline
Knowledge
The Power of Color: How the Printing Industry Protects Brand Quality
In the printing industry, color has always been a core element influencing both quality and sensory experience. Whether in packaging, advertising, or publications, color accuracy directly affects consumer perception and trust in a brand. With the rise of digitalization and globalization, companies increasingly demand brand consistency, making color management more than just an aesthetic concern—it is a safeguard for printing quality and brand value. This article explores the importance of color management, the application of ICC color calibration, and Pantone’s role in brand identity, providing a comprehensive overview of the core knowledge and practical value of color management in printing.
Headline
Knowledge
Is Your Paper Box Truly Recyclable? The Secrets of Composite Packaging
Imagine a typical morning, a warm drink in your hands, held in what looks like an eco-friendly paper cup. You think to yourself, "At least it's not plastic. It must be better for the environment." But have you ever wondered how that paper container holds a hot liquid without leaking? Can it really be recycled with ease? The truth is, there are hidden secrets about packaging materials you may not know.
Headline
Knowledge
How CNC Technology Ensures the Invisible Safety of Flight
The aerospace industry demands extremely high standards for component precision, lightweight design, and durability, and CNC (Computer Numerical Control) technology is a key enabler to meet these requirements. It is widely used in the production of critical parts such as turbine blades, airframe structures, and landing gear. With the global aerospace market expected to grow from USD 900 billion in 2023 to USD 1.2 trillion by 2030 (CAGR ~4.2%), CNC technology, with its micron-level precision and automation capabilities, not only helps improve aircraft fuel efficiency by around 10% but also ensures all components comply with the stringent AS9100D certification standards, making flight safer and more reliable.
Headline
Knowledge
Why Are Smartphones Getting Thinner Yet More Drop-Resistant?
Have you ever wondered why smartphones are becoming increasingly thinner? Driven by user convenience and portability, devices are shrinking while still retaining the functionality of previous generations, or even upgrading it, all while becoming lighter and slimmer. The key behind this lies in CNC (Computer Numerical Control) machine technology, which plays a central role in consumer electronics manufacturing. The consumer electronics industry encompasses smartphones, laptops, wearable devices (such as smartwatches), and various household appliances. These products demand extremely high standards for aesthetic design, structural precision, and functional performance. CNC technology is primarily applied in precision component machining, casing production, thermal management components, and customized designs.
Headline
Knowledge
When Car Windows Meet Technology: Beyond Isolation—Protection, Intelligence, and Electrification
Traditionally, a car window’s main function is to shield occupants from wind and rain. Today, however, modern automotive windows have evolved to incorporate multiple convenience and safety features. High-end vehicles often feature acoustic glass, which uses multi-layer structures with sound-dampening films to effectively block wind and road noise, allowing passengers to enjoy a quiet cabin even at high speeds. Meanwhile, tempered glass undergoes specialized manufacturing processes to ensure that, upon impact, it shatters into small, uniform pieces, reducing the risk of injury and complying with the latest safety regulations. This integration of precision engineering relies heavily on CNC (Computer Numerical Control) machinery. From maintaining uniform glass thickness and precise curvature to ensuring perfect adhesion between layers, even the slightest deviation can compromise noise insulation, thermal performance, and safety. Automakers therefore demand exceptionally high-quality standards from window manufacturers, as these components directly impact brand image and, more importantly, driver and passenger safety.
Headline
Knowledge
Soft PE/PP Waste Recycling Technology in the Circular Plastic Economy
Soft polyethylene (PE) and polypropylene (PP) waste are widely used in modern plastic industries, including packaging films, agricultural coverings, garbage bags, and logistics materials. Due to their high usage volume and recycling challenges, the effective recovery and processing of these materials have become a critical aspect of sustainable plastic management.
Headline
Knowledge
Machine Tool Lubrication and Cooling Systems: Components and Technologies
Machine tools are the cornerstone of modern manufacturing, enabling precise cutting, forming, and machining of metals and other materials. During operation, these machines generate significant friction and cutting heat, which, without proper management, can lead to tool wear, workpiece deformation, and reduced machining accuracy. Lubrication and cooling systems are essential for mitigating these issues, with lubrication reducing friction and wear, and cooling dissipating heat to maintain thermal stability. Together, these systems enhance machining efficiency, extend equipment lifespan, and improve surface quality. Research indicates that effective lubrication and cooling can boost machining performance by up to 30%. This article explores the critical components—lubrication pumps, pipes, coolant pumps, and filters—while highlighting advanced techniques and future trends.
Agree