What Is Lean Manufacturing?
Knowledge

What Is Lean Manufacturing?

Lean production emphasizes customer-oriented, waste elimination, and continuous improvement as the core, and obtains the maximum benefit with the least input cost.
Published: Jun 19, 2020
What Is Lean Manufacturing?

What is lean manufacturing?

The main feature of lean production is to continuously design, develop, and produce new products of high quality and low cost and put them on the market. The management elements include the "master check" responsibility system, "concurrent engineering" (CE), "Just in Time production", "Pull" management, "total quality control (TQC)" and "Team Work". Lean production emphasizes that advanced technology and equipment can only play its full role through the innovation of enterprise management and the reorganization of organizational structure and the improvement of personnel quality. Therefore, it attaches great importance to the integration and effective use of technology, management, and manpower, and adopts parallel engineering to implement product development, production, and marketing to ensure that its products and services meet the needs of small batches and multiple varieties of markets, greatly improving the market competitiveness.

The core of lean production is not the progress of technology, but the innovation of management. It is an advanced management concept, to meet customer needs as the goal, emphasizing the participation of all employees and continuous improvement, through optimizing processes and excellence, to achieve standardized operations. Lean production is a modern large-scale production method. It guides production based on demand, real-time and on-time, Kanban operations, and realizes batch and customized production based on pipeline operations to meet the needs of market diversification. Lean production is a complete technical system. At the beginning of product conceptual design, it also considers many aspects such as structural design, production technology, and process flow to achieve exquisite design, sophisticated technology, and accurate procedures. Lean production is a scientific management method. The production process implements comprehensive quality management. Quality inspection and control are run through each process to ensure that the previous process provides qualified "products" for the next process. If quality problems are found, the operation team has the right to stop production until the problem is solved.

Lean production is through the changes in system structure, personnel organization, operation mode, market supply, and demand, etc., so that the production system can quickly adapt to the changing needs of users, and can make all useless and redundant things in the production process streamlined, and finally achieve A production management method with the best results in all aspects of production, including market supply and marketing.

The 7 wastes in Lean Manufacturing

Lean production is a process improvement system that "fully motivates authorized employees and systems to eliminate waste." Lean production methods are artificial. Anything that exceeds the absolute minimum of materials, machines, and human resources, space, time, and other resources required to increase the value of the product are wasted; these improvements are only sustainable if employees are fully motivated and authorized.

All activities of an enterprise can be divided into value-added and non-value-added activities. Generally, there are a large number of non-value-added activities in the enterprise, and any non-value-added activities are waste. Waste is everywhere, and there is no systematic way to eliminate waste. The lean production method divides waste into categories, which is convenient for people to identify waste, and adopt different systematic tools to eliminate different wastes. The lean production method divides waste into categories, which is convenient for people to identify waste, and adopt different systematic tools to eliminate different wastes.

From lean production, only seven wastes were originally defined. For the convenience of memory, some people use the English "TIM WOODS" to help memory. The eighth waste added later is the non-utilized Talent.

  1. Inventory
    Inventory waste is a waste of products that have not been sold. This includes the waste of inventory, waste of funds, waste of transportation inventory, waste of storage inventory space, waste of lighting inventory space, etc. Also, excessive waste of inventory can mask other waste generated during the production process.
    The environmental impact of waste of inventory includes packaging, work-in-process deterioration or damage, the need to replace damaged or expired inventory, and the consumption of inventory space energy (including heating or cooling).
  2. Waiting
    Waiting for waste refers to the time that one production step of the production line slows down or stops, causing the wait for the next production step. As a classic example, if one task in the production line takes longer than another task, the employees of the next task must wait for the previous step to complete before starting the task, which is a waste of waiting. This task, which requires more time, must become more efficient, other employees must be hired to help, or the workflow must be better coordinated or arranged to make up for the wasted time.
    The impact on the environment comes from the wasted labor and energy of lighting, heating, or cooling while waiting. Besides, due to inefficient work processes, the material may deteriorate and parts may be damaged.
  3. Defects
    Defective products refer to products that deviate from their design standards or deviate from customer expectations. Defective products must be replaced; they require paperwork and labor to handle it; they may lose customers; because these defective products are not used, if resources are placed on the defective products, it will cause waste. Besides, a defective product means that other levels of waste may result. Creating a more efficient production system can reduce defective products and put resources where the defective products can be resolved.
    The environmental costs of defective products include raw materials consumed, defective parts of products that need to be processed or recycled, additional space required to process defective products, and energy consumption for processing defective products.
  4. Overproduction
    Overproduction is the most serious waste. Overproduction will produce other types of waste and lead to excessive inventory. Too many unused products in inventory will have significant costs: storage, material waste, and excessive capital are wasted in unused inventory.
    Of course, depending on the products involved, overproduction may have very serious environmental impacts. Too much raw material is consumed; the product may deteriorate or expire, leading to the need to discard it; and, if the product involves hazardous substances, it will cause more hazardous substances to be wasted, resulting in additional emissions, additional costs of waste disposal, workers may Exposure to harmful substances and potential environmental problems caused by the harmful substances themselves.
  5. Motion
    Whether it is a human or a machine, the waste of these actions can be minimized. If we can achieve the same user value with fewer actions, then too many extra actions are a waste. Action may refer to anything, from workers bending over to pick up things on the floor, to extra wear and tear on the machine, which results in additional capital depreciation.
    Excessive waste of action brings many environmental costs. An obvious example is the waste of materials used to replace worn machines. Another possibility is the health of overburdened employees. If the movements can be controlled to a minimum, the workload of employees can be reduced.
  6. Transport
    Handling waste is moving materials from one location to another. Transportation itself does not add any added value to the product, so it is important to minimize these costs. This means keeping one factory as close as possible to another in the production line, or using more efficient methods to minimize transportation costs. Resources and time are spent on handling materials, hiring personnel for transportation, training, implementing safety precautions, and using additional space. Transportation may also cause a waste of waiting because part of the production line must wait for the material to arrive.
    The environmental costs of waiting include gas emissions, transport packaging used, possible damage to products on the way, and the risk of transporting hazardous materials.
  7. Over-processing
    Excessive processing waste refers to any unnecessary part of the manufacturing process. Scribing in areas that will never be seen, or adding features that will not be used are examples of over-processing. Essentially, it refers to adding value that exceeds customer demand.
    The impact on the environment involves parts, labor, and excessive raw materials consumed in production. Manufacturing over-processed products is a waste of time, energy, and emissions. Simplifying and improving efficiency can reduce these wastes and benefit the company and the environment.
  8. Non-utilized Talent
    Underutilized talent will waste talent in many organizations. Because operators are busy with the process every day, they can usually identify problems or opportunities that are not seen by employees or superiors, but may never ask the operator to provide their opinions. In addition to the tasks assigned to these people, they may also have some additional knowledge and skills. Self-recommendation? Or consider the talents of employees, not their labor.
Published by Jun 19, 2020 Source :kknews, Source :medium

Further reading

You might also be interested in ...

Headline
Knowledge
Understanding the Logistics and Transportation Sector
As the number of e-commerce transactions continues to surge, there is a parallel increase in the demand for logistics services. Amidst the ongoing transformation and upgrade of the industry, the integration of smart technology has emerged as a pivotal factor in driving its development.
Headline
Knowledge
Understanding Mechanism Design and Its Practical Applications
Creating an effective mechanism design entails thoughtful consideration of factors such as materials, specifications, precision, manufacturing processes, and functionality. Moreover, it must be cost-effective to ensure the development of a successful mechanism design.
Headline
Knowledge
Understanding the Granulation Process
Plastic granulation technology plays a pivotal role in the manufacturing of plastic products and the recycling of resources. It is employed to produce a diverse range of plastic products or raw materials, offering both environmental and economic advantages.
Headline
Knowledge
What Constitutes Contemporary Architectural Frameworks for Robotic Computing?
The behavior of robots is frequently modeled as a computational graph, wherein data flows from sensors to computational technology, extending to actuators and then looping back. To enhance performance capabilities, robotic computing platforms need to adeptly map these graph-like structures to CPUs and specialized hardware, such as FPGAs and GPUs.
Headline
Knowledge
How Does the Electroplating Process Work for ABS Plastic?
Over the past few years, plastic electroplating has gained widespread popularity, particularly in the decorative electroplating of plastic components. Among the various types of plastic utilized in electroplating, ABS plastic stands out as the most extensively employed.
Headline
Knowledge
What Are the Fundamentals and Benefits of Choosing between Liquid and Powder Coating?
Metal fabricators aiming to venture into finishing processes should familiarize themselves with two prevalent options—liquid and powder coating—along with the prerequisites necessary for a company seeking to employ either or both.
Headline
Knowledge
Anticipating the Emerging Trends in the Global Laser Industry
In light of the evolving global industry demands, the laser industry and technology are shifting their focus towards meeting the requirements of 5G semiconductors and smart vehicle processes. While Taiwan's laser industry has a well-established foundation built over the years, sustaining international competitiveness necessitates a proactive advancement in independent laser technology.
Headline
Knowledge
What is the Purpose of Surface Treatment for Metals?
Defects are bound to arise during the reprocessing of mechanical equipment or parts related to metal. As a result, the final item's surface treatment process plays a crucial role, serving the dual purpose of enhancing aesthetics and providing protection. This process not only improves the performance of metal parts but also helps prevent rust.
Headline
Knowledge
Selecting a Hydraulic Press and Understanding its Manufacturing Procedure
Hydraulic presses find applications in compaction, assembly, pressing, forming, embossing, and stretching. They play a crucial role in compaction within the cosmetics sector, assembly in the automotive industry, molding of electronic products, and stamping in the home appliance industry.
Headline
Knowledge
Introduction to RFID Tags: The Significance of RFID in Modern Retail Supply Chains
There are two types of RFID systems: passive and active. For those unfamiliar with RFID, you may be curious about the distinctions between these types and which one suits your application best. In the following, we offer a brief explanation.
Headline
Knowledge
Anticipating the Emerging Trends in the Global Laser Industry
In light of the evolving global industrial demands, the laser industry and technology are shifting towards meeting the requirements of 5G semiconductors and advanced processes for smart vehicles. While Taiwan's laser industry has made substantial progress over the years, maintaining alignment with international advancements necessitates a proactive push in independent laser technology.
Headline
Knowledge
Exploring Sheet Metal: Defining Sheet Metal and its Various Applications, with a Focus on Laser Applications
The term originates from English, known as plate metal. Typically, certain metal sheets undergo plastic deformation either manually or through die-stamping to attain the desired shape and size. These sheets can then undergo additional shaping through welding or a limited amount of mechanical processing to create more intricate components.
Agree