Types of Plastic Manufacturing Processes
Knowledge

Types of Plastic Manufacturing Processes

Plastic products can be seen everywhere in daily life, and different plastic products are made through different processing techniques. Plastics manufacturing is the process of making plastic into semi-products or products with practical value. Plastics manufacturing usually includes primary processing and secondary processing of plastics.
Published: Mar 09, 2023
Types of Plastic Manufacturing Processes

Knowledge of Plastic Materials

Plastic raw materials are solid or elastomers at room temperature, and the raw materials are heated during processing to make them a fluid, molten liquid. Plastics are classified into "thermoplastic plastics" and "thermosetting plastics" according to their processing characteristics.

"Thermoplastics" can be heated and shaped many times, and are recyclable. Their fluidity is like mucus and has a slow melting state. Commonly used thermoplastics are PE, PP, PVC, ABS, etc. Thermosetting plastics will permanently solidify after heating and cooling. The molecular chains form a chemical bond and become a stable structure, so even if heated again, they cannot reach a molten liquid state. Epoxy resin and rubber are examples of thermosetting plastics.

What Are the Types Plastics Manufacturing Processes?

  • Plastics Casting (Dip Molding, Slush Molding, Rotational Molding)
  • Blow Molding
  • Plastics Extrusion
  • Plastic Thermoforming (Compression Molding, Vacuum Forming)
  • Plastic Injection Molding
  • Plastics Welding (Friction Welding, Laser Welding)
  • Plastic Foaming

The followings are some common types of plastic processing processes and details:

  • Plastics Casting:
  • Metals are not the only materials that can be cast; plastics can also be cast. By pouring the liquid plastic material into a mold, letting it cure at room temperature or low temperature, and then taking out the finished product a smooth surfaced object is produced. This process is often called casting. Materials often used are acrylic, phenolic resin, Polyester, and Epoxy. They are often used to make hollow products, plates, etc., and the plastic processes used include Dip Molding, Slush Molding, and Rotational Molding

  1. Dip Molding:

    Soak the high-temperature mold in the molten plastic liquid, then slowly take it out, dry it, and finally peel off the finished product from the mold. The speed of removing the mold from the plastic needs to be controlled. The slower the speed, the thicker the plastic layer. This process has cost advantages and can be produced in small quantities. It is commonly used in the production of hollow objects such as balloons, plastic gloves, hand tool handles, and medical equipment.

  2. Slush Molding:

    Pour the molten plastic liquid into a high-temperature mold to make a hollow product. After the plastic forms a layer on the inside surface of the mold, the excess material is poured out. After the plastic solidifies, the mold can be opened to take out the parts. The longer the plastic stays in the mold, the thicker the shell. This is a relatively high-degree-of-freedom process, and can produce more complex shapes and obtain good appearance details. Car interiors are commonly made of PVC and TPU which is often used for surfaces such as on instrument panels and doorknobs.

  3. Rotational Molding:

    Put a certain amount of plastic molten liquid into the heated two-piece closed mold, and then rotate the mold to distribute the material evenly on the mold wall. After solidification, the mold can be opened to take out the finished product. In the process, air or water is used to cool down the finished product. The finished product must have a hollow structure, and because of the rotation, the finished product will have a soft curve. In the beginning, the amount of plastic liquid determines the wall thickness. It is often used to make axially symmetrical circular objects, such as pottery flower pots, children's play equipment, lighting equipment, water tower equipment, and so on.

  • Blow Molding:

    Blow molding is also called hollow molding. The middle of the machine is covered with a blowing device. Raw plastic material is heated and passed through a die which will extruded the plastic as a hollow tube strip. When the two molds are closed, they will cut off the remaining material, and then air is blown into the mold. At this time, the plastic will fill up the entire inner wall of the mold like blowing up a balloon, and finally, the finished product will be taken out after cooling. The materials used are ABS, LDPE, HDPE, PP, PC, PS, etc., and the products are mostly various bottles and cans, and liquid-filled parts used in automobiles and medical treatment.

  • Plastics Extrusion:

    Extrusion molding involves heating and softening the thermoplastic material and then extruding it into the molding die for molding. The plastic will form a cross-section consistent with the die. After a long section is extruded it is cooled and then, according to the need, is cut to the required length. Extrusion molding equipment has low cost and is widely used. Most of them adopt automated production, and are mainly used to produce pipes, plates, rods, films, water pipes, parts, plastic plates, plastic strips, cables, etc.

  • Plastic Thermoforming:

    Thermoforming is placing a material with uniform thickness in a mold, heating it to soften the material, covering the surface of a mold with the material, and then extruding it when cooled with an external force. After the cooling stage it solidifies, giving the finished product. Thermoforming can be subdivided into hot press molding (compression molding) and vacuum molding. The difference lies in the different ways of applying pressure.

    1. Compression Molding:

      Compression molding is a method in which plastic granular materials are placed on a heated mold and formed by a downward pressure from a second mold at the same high temperature. It is also called hot compression molding. The wall thickness of the finished product depends on the gap between the molds. When the molds are separated, the finished product will be pushed out by a thimble. Because there is no pouring port and runner system in the process, raw materials are not likely to be lost. Plastic materials that can be formed include PF, MF, UF, and EP. Post-processing removes unnecessary excess material. Compression molding is commonly used to make thermosetting plastic products and plastic products with glass fiber reinforced materials. It is especially suitable for objects with simple shapes, no inner chamfers, and thicker parts, such as heavy parts, sockets, cups, and plates, etc.

    2. Vacuum Forming:

      Vacuum forming can also be called vacuum thermoforming. After the plastic sheet is evenly heated to soften, the machine will contact the plastic sheet with the mold, and draw the air out to form a vacuum state, allowing the plastic sheet to tightly cover the mold for molding. The finished product is allowed to cool down on the mold. Because vacuum forming is a low-pressure process, there are few restrictions on the mold material. Vacuum forming technology is suitable for proofing and mass production. Wood and plaster can be used in small quantities, while epoxy resin or wear-resistant aluminum can be used as molds for mass production. All forms of thermoplastic plastic sheets can be used, and the most common are PS, ABS, acrylic, and PC. They are commonly used for applications such as baking utensils, bathtubs, packaging materials, furniture, car interiors, etc.

  • Plastic Injection Molding:

    In plastic injection molding, granular raw materials are fed into the machine, where it is heated and the molten plastic is injected into a stainless-steel mold with high temperature and high pressure. The temperature is then lowered, and the finished product is ejected with a thimble. The range of materials and applications that can be used is wide because steel molds can produce complex, high-precision, and diverse finished products. The relative cost of mold opening is high, so output is usually increased to share the mold cost. Plastic injection molding can produce a wide range of items, including daily necessities, auto parts, medical equipment, electronic products, baby toys, and so on.

  • Plastic Welding:

    Welding is the process of using heat to melt thermoplastics to join plastic objects. The methods are divided into contact and non-contact; contact types of welding include vibration friction welding, and non-contact types include ultrasonic, laser, infrared, gas convection welding, etc.

    1. Friction Welding:

      Under a set pressure, vibration amplitude, and frequency, two plastic objects quickly rub against each other to generate heat. The plastic changes to a molten state at the joint surface, and the two surfaced are clamped together to form the joint. This process id suitable for thermoplastic materials and semi-crystalline resins such as HDPE, PP, and TPO. Common applications are car intake manifolds, instrument panels, car lights, and other aerospace applications. Usually, the molten plastic will flow out from the joint to produce flash, but this kind of process does not require high-cost molds to achieve a good air-tight joint.

    2. Laser Welding:

      Laser welding is used the two objects must be superimposed. The upper layer can be penetrated by laser light. The laser light will penetrate the upper layer and illuminate the lower layer which absorbs the laser light. The lower surface melts and conducts heat to the upper object. Clamps are used to regulate the tightness between objects, and similar plastics have a high degree of connection stability.

  • Plastic Foaming:

    The difference between foam molding and other molding is that in foam molding, the material needs to be expanded before the material is poured into the mold. Most thermoplastics and thermosetting plastics such as PUR, EPS, PVC, EPE, EPP can be processed into foamed materials. The spherical raw material will be thermally expanded to 40 times its original size using pentane and hot steam. The material is allowed to stand for about 12 hours and then heated in the injection mold or injection machine, where the particles fuse and mold at high temperatures. Foam material can greatly reduce the weight of the finished product. It is good for physical buffering, thermal insulation, electrical insulation, and sound absorption. It can be mass produced and processed in a wide range of sizes and forms such as fruit packaging, surfboards, bicycle helmets, car interiors, etc.

  • Published by Mar 09, 2023 Source :mag

    Further reading

    You might also be interested in ...

    Headline
    Knowledge
    From Marine Polysaccharides to Pet Wellness: A New Milestone in Fucoidan Applications
    In recent years, companion animals have come to occupy an increasingly significant role in human life—not merely as pets, but as integral members of the family. As pet owners place growing emphasis on animal health and longevity, the demand for functional health ingredients has surged. Among these, fucoidan, a marine-derived polysaccharide extracted from brown seaweed, has emerged as a key player in the field of pet nutritional science. Recognized for its immunomodulatory, antioxidant, and cellular repair properties, fucoidan is redefining the standards for preventive care and holistic wellness in companion animals.
    Headline
    Knowledge
    Eco-Friendly Tableware and Food Safety: A Choice for Both the Environment and Health
    With a global increase in plastic reduction and environmental awareness, a growing number of businesses and consumers are opting for eco-friendly tableware made from natural or biodegradable materials to replace traditional plastic items. Eco-friendly tableware—such as that made from bamboo fiber, sugarcane bagasse, leaf fiber, or PLA—typically does not contain harmful substances like plasticizers or BPA, thus reducing potential health risks. According to the European Union's Food Contact Materials Regulation (EC No. 1935/2004), "food contact articles shall not transfer their constituents to food in quantities that could endanger human health." However, when production processes or manufacturing technologies are inadequate, eco-friendly tableware can still pose food safety risks.
    Headline
    Knowledge
    Food Cleanliness and Its Impact on the Human Body: A Farm-to-Table Guarantee
    The cleanliness of food, defined as the hygienic state of food surfaces and production environments, is crucial for consumer health. The World Health Organization (WHO) reports that globally, approximately 600 million people fall ill each year from consuming contaminated food, leading to about 420,000 deaths.
    Headline
    Knowledge
    Green Printing Transformation Becomes the Core Competitiveness of a Sunset Industry
    As global concerns over climate change, plastic pollution, and carbon emissions intensify, the printing industry is undergoing a profound green transformation. From packaging and commercial publishing to labels and promotional materials, green printing is no longer just an added value—it's becoming a fundamental requirement for brand compliance and supply chain standards.
    Headline
    Knowledge
    From Equipment to System: Building a Highly Consistent and Maintainable Smart Coffee Platform
    In today’s retail and service environments, smart coffee solutions that offer high consistency, scalability, and ease of maintenance have become key criteria for commercial adoption. Based on advanced automation control technologies and incorporating Specialty Coffee Association (SCA) brewing standards, this platform integrates modular hardware architecture, data-driven algorithms, and cloud-based remote management. It enables comprehensive deployment—from standalone machines to full-site integration. This system-oriented design not only enhances product stability and flavor reproducibility, but also significantly reduces maintenance costs, making it an ideal solution for chain retailers, branded venues, and smart vending scenarios.
    Headline
    Knowledge
    Development Trends of Intelligent Industrial Lifting Equipment
    As global manufacturing accelerates its transition toward smart transformation, the demand for industrial lifting equipment and lubrication systems continues to rise. The Taiwan and Asia-Pacific markets are steadily expanding, with increasing demand for high-safety and precision-controlled lifting and lubrication equipment in the automotive repair and industrial manufacturing sectors. The advancement of smart manufacturing has promoted the integration of intelligent sensing and remote monitoring technologies, making these devices the core driving force of smart factories, fueling rapid market growth and serving as a key driver for Fugimaku’s continuous innovation and development.
    Headline
    Knowledge
    The Tough Hero of the Tool World: The Secrets of Tungsten Carbide
    In the world of industrial cutting tools, tungsten carbide is like a superhero: extremely hard, wear-resistant, heat-tolerant, and remarkably tough, able to stay sharp without chipping during high-speed cutting and prolonged machining. From rough milling to precision engraving, its variety of tool shapes and coating technologies allow it to tackle diverse challenges. Its applications even extend beyond cutting tools to wear-resistant parts, mining bits, and even fashion accessories. Whether in automotive components, aerospace molds, or everyday aesthetics, tungsten carbide stands as a reliable powerhouse in modern manufacturing. This article will take you deep into the material’s properties, machining principles, and real-world applications.
    Headline
    Knowledge
    Professional Analysis and Application Value of Pneumatic Tools
    Pneumatic tools are a category of industrial equipment powered by compressed air, widely used across manufacturing, assembly, maintenance, and construction sectors. Compared with electric tools, pneumatic tools are lighter in weight, deliver consistent output, offer high durability, and provide superior safety. These advantages make them the preferred choice for professionals in scenarios that require prolonged, high-frequency, and high-precision operations.
    Headline
    Knowledge
    Common Chronic Diseases and Their Characteristics: A Personalized Health Management Guide
    In pursuit of a fast-paced life, we often overlook our body's warning signs. According to the Health Promotion Administration, Ministry of Health and Welfare, chronic diseases like hypertension and diabetes have become a hidden threat to public health. Though these conditions progress slowly, long-term neglect can lead to serious consequences such as heart disease or stroke. This article will help you understand their causes and provide a simple “self-health management process” to proactively take control of your health.
    Headline
    Knowledge
    Professional Analysis of Freight Logistics: From Transportation Management to Smart Supply Chains
    Freight logistics is a critical component of modern supply chains. It encompasses not only the transportation of goods from origin to destination but also transportation planning, risk management, warehousing, and the integration of information technology. Professional freight operations can significantly enhance transportation efficiency, reduce costs, and ensure the safety of goods.
    Headline
    Knowledge
    Changeable RF Filter Output Formats: A Detailed Overview
    The article explores the significance of RF filter output formats and their impact on performance, reliability, and application. It discusses three main types: Connector Type (robust connections for high-power applications), SMD Type (compact and suitable for PCB integration), and Pin Type (durable through-hole mounting for industrial and automotive use). Key challenges include maintaining consistent impedance matching, minimizing insertion loss, and ensuring mechanical strength across formats. Choosing the right format depends on the device, installation, and operational requirements, while designing a single filter that performs well across all formats remains a technical challenge in RF engineering.
    Headline
    Knowledge
    PD Chargers and PD 3.1 Explained: Everything You Need to Know
    The article provides an in-depth overview of USB Power Delivery (PD) and the latest PD 3.1 standard. USB PD enables faster and more efficient device charging, and PD 3.1 expands power delivery up to 240 watts, supporting high-power devices like gaming laptops, large monitors, and e-scooters. Key features include adjustable voltage, bidirectional power, and backward compatibility with older cables. PD 3.1 simplifies charging, reduces the need for multiple chargers, and improves efficiency for high-capacity devices. Its adoption is driving market growth and moving the industry toward a universal, streamlined charging standard.
    Agree