Will Micro LED Replace LCD and OLED?
Trend

Will Micro LED Replace LCD and OLED?

The electronics industry categorizes LED technologies according to the size of the LED chip. For example, an LED chip that is less than 150 μm is called a mini LED; an LED chip less than 50 μm is called a micro LED. As the size of LED chips becomes smaller and smaller, the structure of display panels will also change accordingly.
Published: May 18, 2022
Will Micro LED Replace LCD and OLED?

When the size of an LED chip is as small as the pixel, each pixel corresponds to one micro LED chip. A micro LED emits light by itself, so it can control the brightness and color of the pixel simultaneously. The micro LED does not require the liquid crystal layer and filter structure of traditional LCD screens.

The screen structure of a micro LED is close to that of an OLED. Both have self-illumination of pixels, simple structure and high luminous efficiency. However, the material life of micro LED is much higher than that of OLED, and its stability is also stronger.

From the perspective of technological maturity, because production costs are still high, the micro LED has a ways to go before it will see large-scale production. OLED faced this cost challenge in its early years of development. Although the cost of a large OLED screen is still much higher than that of an LCD screen, it has reached a standard that can be accepted by most home users.

Judging from past experience, as micro LED technology matures, will OLEDs and LCDs be replaced? Perhaps the answer is not that simple.

Micro LEDs Are Still a Long Way from Making Big Screens

During the early stages of development, it was difficult to apply micro LEDs to large panels. Just like with OLEDs, the production of large-panel, micro LEDs has been greatly limited by yield and cost.

LED chips are becoming smaller, and their value is becoming greater than expected. During the manufacturing of micro LEDs, the wafer eventually needs to be transferred to the back plane of the screen. If the resolution of the screen is 1,920 × 1,080, the number of pixels on the screen exceeds 2 million. Because each pixel consists of three sub-pixels of red, green and blue, there are 6 million micro LED chips on this micro LED screen.

With contemporary semiconductor manufacturing processes, it is not difficult to grow 6 million micro LED chips on a wafer, the difficult thing is to transfer these 6 million micro LED chips to the backplane. The industry calls this transfer process a mass transfer. Even the high-end mini LED screens on the market, such as the 2021 iPad Pro 12.9", have only 10,000 mini LEDs in the backlight layer. Therefore, mass transfer is a major difficulty in micro LED manufacturing.

Different solutions exist on the market for the mass transfer problem. Among them, the two main categories are: whole-piece transfer and batch pick-and-place. Whole-chip transfer is suitable for small-sized screens, because the screen panel is small enough, so it can be transferred as a whole. The technology of picking and placing in batches is more difficult, and large screens can only use this solution to achieve mass transfer.

Mass transfer isn't the only technical hurdle in micro LED panel manufacturing, but it's the watershed that constrains micro LED manufacturing for large and small screens. Of course, how big a screen can be, depends largely on cost, as demonstrated by Samsung and Sony Micro; LED large-screen TVs all cost over a million US dollars.

At display technology exhibitions in recent years, the micro LED products being displayed by manufacturers have become more pragmatic. At this year's SID Display Week, the micro LED products displayed by Tianma Microelectronics, AUO, Chitron Technology and other manufacturers were all aimed at small screen applications such as automotive dashboards and electronic paper. Of course, even if the display is a large-screen application, the current parameter advantages have not greatly surpassed OLED/LCD.

Opportunities At This Stage

The obvious advantages in structure determine the characteristics of micro LED's high pixel density, high brightness, high contrast, and fast response. High pixel density, high brightness and high contrast can be significantly perceived from the structure. In previous prototype product demonstrations, manufacturers have demonstrated displays with tens of thousands of ppi (pixels per inch) pixel density.

Since the micro LED chip is small at the pixel level, it can display true black with no light from a single pixel. At the same time, the ultra-small LEDs in micro LED displays are more efficient in converting electricity into photons, and micro LEDs are brighter than OLEDs and LCDs; based on higher electron mobility, micro LEDs can switch at nanoseconds (ns) grade. Due to the limitations of the manufacturing process, the micro LED is only suitable for small screens in the early stage, for example, it is especially suitable for AR/VR applications, including goggles for entertainment.

AR/VR's requirements for display brightness, contrast, pixel density and response are much higher than those of mobile phone consumer electronics products. It is technically difficult for LCD and OLED to meet the needs of such applications. Many consumers have reported that the current AR/VR applications are prone to dizziness and lack of immersion. In fact, this is largely limited by the technology itself of LCD and OLED. The application of micro LED in the field of AR/VR has significantly overcome this problem. Perhaps the key to the future development of AR/VR will depend on breakthroughs in micro LED technology.

In addition, the miniaturization of micro LED chips is conducive to the softness and transparency of the panel. Chitron Technology has demonstrated a soft + transparent screen. "Softness", "transparency", and "foldable" have been the hotspots of screen display technology over the past two years, and to some extent are the keys to achieving industrial breakthroughs.

Analysts have learned from LED chip manufacturers upstream in the panel supply chain, that early applications of micro LEDs will focus on wearable devices, AR, VR, and automotive small screen products. This is logical from a technical point of view.

It is worth mentioning that although the micro LED has many technical advantages over LCD/OLEDs, some of these advantages are still in the theoretical stage. One representative advantage is the external quantum efficiency (EQE) - which is the luminous efficiency. Compared with LCDs, the screen structure of micro LED displays does not include the liquid crystal, color filter, and polarizer. Compared with OLEDs, they do not require complex packaging technology. In theory, the luminous efficiency of micro LED displays is much higher than LCDs or OLEDs.

However, the extremely small size of micro LEDs makes them very susceptible to sidewall effects - an engineering issue that arises in the manufacturing process. So the actual EQE of micro LEDs is extremely low, and may not even be comparable to LCD or OLED. The existence of sidewall effects also makes it more difficult for micro LEDs to produce ideal large-screen applications. Therefore, the existing micro LED solutions on the market are far from reflecting the technical advantages of micro LED itself.

Complementary Application with LCD/OLED

Various technical challenges of micro LEDs are difficult problems that many market players are trying to solve. The technical characteristics of micro LEDs will also determine the changes that will need to be made in the display industry in the future. The miniaturization of micro LEDs will further tilt panel manufacturing towards semiconductor technology.

CMOS is limited to small size screens because CMOS faces cost issues when being produced for large-size screens. Therefore, amorphous silicon and low temperature polysilicon TFTs are still the main technologies being used for the manufacture of large-screen micro LEDs.

Early observations of micro LEDs from Hendy Consulting suggest that there may be a value shift in the micro LED supply chain. This is determined by its technical characteristics. As micro LEDs gradually move closer to IC manufacturing, they challenge the status of traditional panel manufacturers.

It is expected that there will be four possible developments in the future of the display industry: the first is that traditional industry players (such as Samsung and LG) will remain at the center of the industry, but their value will be diluted; the second is that manufacturers with vertical integration capabilities, such as LuxVue, (acquired by Apple), and Glo AB (invested in by Google), will occupy dominant positions in the micro LED world; the third is that the composition of the new industrial structure and its value may be transferred to LED chip manufacturers, semiconductor manufacturers and enterprises holding key IP (multi-party cooperation); the fourth is that micro LED may not become the mainstream of the market.

Over the past two years, micro LED related investments are increasing on a large scale in South Korea, Taiwan, and China, with upstream and downstream companies in the industry actively cooperating. Before 2018, the market players of micro LED were independent, and different companies were taking very different technical approaches to development.

Considering that micro LED manufacturing technology may need to be application-oriented, customized manufacturing processes will need to be developed which may be very different from LCD/OLED manufacturing technologies. Independent management is not conducive to the market development of micro LED, as there are various technical approaches being taken which have no common standards for technology. Although the industry is in its early stages of development, beginning in 2020, there has been a lot of cooperation in the industry, which is a sign that micro LEDs are maturing.

The market variables are very large, and ESMC analysts believe that the industry development direction analyzed by Hendy Consulting may be too simplistic. In their view, not only the changes in market investment and cooperation trends over the past 1-2 years, but also the possibilities for long-term development of micro LEDs in the future, point to many unforeseen challenges and possibilities.

Just as OLED did not completely replace LCD in the past, as a technology with development potential in small screens and AR/VR in its early stages, micro LED is very likely to coexist with OLED and LCD for a long time. But applications of the three will be different. For example, micro LED will focus on the small screen and AR/VR market, eating into the value of OLED and LCD in the high-end market. Although the market size of OLED and LCD will shrink, the three will form a subtle complementary relationship in terms of technology and market, rather than micro LED replacing OLED or LCD.

Published by May 18, 2022 Source :EETimes

Further reading

You might also be interested in ...

Headline
Trend
Can 3D Printing be Utilized in the Die and Mold Industry?
As adoption of 3D printing spreads throughout the larger sector of industrial manufacturing, the value of the technology as more than just a rapid prototyping tool is becoming increasingly evident. In this article, we gave an overview of how 3D printing is used to fabricate molds and dies for injection molding and die casting.
Headline
Trend
Motion Control Plays A Key Role in Industrial Automation Developments
In the trend of industrial automation, motion control is a key part of it. Automating operations through machines can avoid a lot of human error, and can also speed up production efficiency and efficiency. How to make the machine act according to the command is the application category of machine motion control.
Headline
Trend
Global Market of Electric Bicycle
Global environmental awareness is rising, and bicycles have gradually changed from sports and leisure functions to commuting means. Among them, electric bicycles have been fueled by an aging population, which has led to a substantial increase in the global output of electric bicycles in recent years.
Headline
Trend
Intelligent Plastic and Rubber Machinery
With the rise of global environmental protection awareness, the improvement of process efficiency and pollution reduction of plastic products have become important issues for the rubber and plastic industry. In response to the shortage of workers and the reduction of personnel contact, mechanical automation and cloud services have become the new normal in the industry.
Headline
Trend
Development of the Wireless Power Industry and Future Electrification
The wireless power industry is expected to grow exponentially. Wireless power has a major impact on almost all fields because it enables the Internet of Things to achieve and develop faster.
Headline
Trend
Status and Trends of the Biotechnology Pharmaceutical Industry
The growth of the overall global biotech pharmaceutical market is slowing down. Europe and the United States have entered a mature period, and global development in the overall biotech pharmaceutical industry market has slowed down in recent years.
Headline
Trend
Time to Start Digital Reinvention for Enterprises
New technologies bring forth the new. AI and the cloud are irreversible trends that are strengthening the competitiveness of enterprises. Enterprises should consider how to implement AI and the cloud in each application of the enterprises.
Headline
Trend
Low-Carbon Production and Global Climate Change
Countries are actively developing heavy industries, manufacturing, and infrastructure to drive market growth, but they often pay environmental costs accordingly. Approximately 70% of global greenhouse gas emissions come from infrastructure construction and operations, such as power plants, buildings, and transportation. What will be the effect of promoting society's emphasis on low-carbon manufacturing?
Headline
Trend
How Does AI Integrate with Manufacturing Industry?
Improving production efficiency is the foundation for the manufacturing industry to gain a firm foothold. The manufacturing industry achieves smart operations by introducing AI applications, automatically identifying abnormalities, or making adjustment suggestions, and assisting companies in achieving more accurate adjustments to machines and upgrading equipment. During the process, the traditional manufacturers are transformed into the smart manufacturers.
Headline
Trend
Growing Factors of the Global Cloud Server Market
The cloud server market is a cloud infrastructure service that allows service providers and end-users to use virtual networks to build architectures.
Headline
Trend
Face Recognition Technology Has Improved in Digital Age
Artificial Intelligence, Machine Learning, Deep Learning, and Big Data are topics that have been frequently discussed recently. These technologies are used in many fields, including the financial industry, logistics industry, business analysis, unmanned vehicles, computer vision, natural language processing, etc., and have spread in every corner of life.
Headline
Trend
Global Market Trend of Smart Lock Industry
In recent years, smart door lock technology has developed rapidly. As an important part of smart home access control, the smart lock market will grow substantially in the next few years.
Agree