Metal Spraying is Suitable for the Electroplating Process of Large and Small Workpieces
Knowledge

Metal Spraying is Suitable for the Electroplating Process of Large and Small Workpieces

Metal spraying is the process that uses compressed air or inert gas to spray molten, corrosion-resistant metal onto a metal surface to form a protective coating.
Published: May 04, 2022
Metal Spraying is Suitable for the Electroplating Process of Large and Small Workpieces

What is Metal Spraying?

Metal spraying, also called metallization, is a method of coating metal surfaces with thin films of melted atomized metals. As they are sprayed onto the metal surface, ionic reactions create a strong attractive force to hold the metal film to the base metal.

In metal spraying, the coating material is melted and atomized in a special spray sink or spray gun and sprayed onto the base material. Oxyacetylene flames are generally used, but other gases are sometimes used. A coated wire is automatically fed through a flame core, and as the wire is melted it atomizes and sprayed onto the base material by a compressed airflow. This atomizing process can be used with almost any metal that can be made into wire. Another type of spray gun sprays powdered material through a flame. The advantage of this method is that it can be used with materials other than metals, such as metal-ceramic composites, oxides, and cemented carbides.

Preparations Before Metal Spraying:

Since the bond between the coating material obtained by metallization and the base material is purely mechanical, the base material must be properly pretreated. To obtain a good mechanical bond, the substrate surface must be clean and free of oil.

A most common method of surface preparation is sandblasting. The grit is sharp enough to produce a truly rough surface. For cylindrical surfaces that can be turned on a lathe, it is effective to machine a very coarse thread and then roll it lightly with a roller cutter. Another improvement that can be used for flat surfaces is to use a grooving knife to cut a series of parallel grooves on the surface and then use a knurling knife to cut facets between the grooves. If the plated surface requires subsequent machining, the substrate surface should be prepared by roughing or grooving.

What are the Applications of Metal Spraying?

Metallization has many important uses in product design. Protective coatings such as zinc and aluminum are sprayed onto steel surfaces for corrosion resistance. Because metallization can metalize almost any metal or non-metallic surface, it provides a method of coating a conductive surface onto a poorly conducting or non-conducting surface. Copper or silver is often sprayed onto glass or plastic to create a conducting surface. After metallization, items can be treated in a variety of ways, such as by polishing or brushing, or can be left in the sputtered state. Metallization is often used as a decorative solution in the manufacturing and construction industries.

The Spray Coating Process:

  1. Degreasing treatment: clean with acetone or alcohol.
  2. Surface treatment: corona discharge treatment, ultraviolet irradiation treatment, etc.
  3. Bottom surface coating/hardening treatment: The bottom surface coating process can improve adhesion between the surface and the spray coating. Bottom surface coating and hardening treatments are only preparations before coating. There are used to prepare base materials that have poor adhesion to coatings such as steel.
  4. Sputtering process: Materials used for electrodes can be Al, SUS304, etc.

What Metal Spraying Processes are there?

Vacuum metal spraying process:

The vacuum coating process is a physical method of plating metal onto a substrate. Coating takes place in a vacuum chamber, where the metal is melted and becomes gaseous when it reaches its vaporization point. The gaseous molecules then condense on the target substrate, forming a relatively uniform coating. The vacuum system consists of a sealed chamber where the coating process takes place and multiple pumps outside the enclosure that pump air out to reach the vacuum required for the process. A power source supplies high voltage electricity to an electrode connected to a series of insulators containing tungsten filaments that evaporate the metal. There are eight to ten major steps in the vacuum metallization process. Generally, a spray coating takes 2 to 3 hours to complete.

Substrates suitable for vacuum metallization include metals (tin, steel, aluminum, etc.), plastics (ABS, polypropylene, styrene, etc.), and glass. To obtain a perfect, flawless coating, the raw substrate surface must be free of contamination such as release agents, fingerprints, dirt, dust, oil, and grease.

Nano spray:

Nano spraying, or nano-sputtering, is a process in which a silver ammonia solution is sprayed on the surface of a workpiece with a spray gun forming a silver mirror surface. A protective solvent can be added to the surface to form different colors. Advantages of the nano-sputtering electroplating process are that nano-sprayed products have better adhesion, impact resistance, corrosion resistance, water resistance, weather resistance, wear resistance, and scratch resistance, and have good anti-rust performance and excellent hardness. Compared with traditional electroplating, it is less polluting to the environment.

Nano spraying is can be used for the surface treatment of fine precision products as well as for large items such as automobiles and large electrical appliances. They are also be used for surface decoration and protection spraying in many other industries.

Published by May 04, 2022 Source :kknews, Source :read01

Further reading

You might also be interested in ...

Headline
Knowledge
From Cavitation Effect to Industrial Applications: The Secrets of Ultrasonic Cleaning
When your glasses, tableware, or electronic components are stained with stubborn dirt, what can you do? Traditional methods often require vigorous scrubbing or even harsh chemical solvents, which are not environmentally friendly and may scratch the item. At this moment, ultrasonic cleaning acts like an “invisible little helper”, reaching deep into grooves and gaps to gently yet effectively remove contaminants.
Headline
Knowledge
The “Spark Magician” of Metalworking
Electrical Discharge Machining (EDM) is a non-traditional machining process that removes metal through electrical sparks. Unlike conventional methods, it is not limited by material hardness and can precisely create deep cavities, micro-holes, and complex structures in hardened steel, tungsten carbide, or superalloys. The three main types of EDM include wire cutting, die-sinking, and hole drilling, which are widely applied in mold making, aerospace, automotive, and medical industries. Although EDM has a slower processing speed, works only with conductive materials, and requires consideration of electrode wear and surface treatment, its advantages in high precision, zero cutting force, and superior surface finish make it an indispensable technology in precision manufacturing. Moreover, it continues to evolve in line with the trend toward smart manufacturing.
Headline
Knowledge
Press Brake vs Shearing Machine: Functional and Technical Comparison of Industrial Processing Equipment
Press Brake and Shearing Machine are two essential types of equipment in the field of machine tools, widely used in the processing of metal, wood, and other materials. They play critical roles in manufacturing, enabling efficient and precise material forming and cutting. This article introduces the definitions, functions, technical features, and applications of folding and cutting machines, offering neutral and practical knowledge sharing.
Headline
Knowledge
Master Chuck Types & Selection: The Essential Guide for Machinists
In the world of precision manufacturing, every minute detail can determine the quality of the final product. The chuck is a critical yet often overlooked component—it's not just a tool for holding a workpiece, but the very heart of ensuring machining accuracy, efficiency, and safety. This article will take you on a deep dive into the diverse universe of chucks, covering their operating principles, design philosophies, common types, and how to select the right jaws and chucks for different needs. Whether you're new to the industry or a seasoned engineer, this guide will unlock the intricate secrets of chucks, helping you master every detail on your path to manufacturing success.
Headline
Knowledge
An Overview of Electrical Discharge Machining (EDM)
Electrical Discharge Machining (EDM) is a non-traditional manufacturing process that utilizes electrical sparks to remove material from a workpiece. Unlike conventional machining methods such as milling or turning, which rely on physical contact between a tool and the material, EDM operates without direct contact, making it ideal for processing hard or brittle materials that are difficult to machine otherwise. The process involves generating a series of rapid electrical discharges between an electrode and the workpiece, submerged in a dielectric fluid, which erodes the material through thermal energy. This technique has revolutionized precision manufacturing by enabling the creation of complex geometries with high accuracy.
Headline
Knowledge
Applications of Machine Tools in the Aerospace Industry
The aerospace industry is a highly specialized and technology-driven sector, encompassing the design, manufacturing, and maintenance of aircraft, spacecraft, satellites, and related equipment. Machine tools play a critical role in this field, enabling the precision machining of complex metal and composite material components. These tools enhance production efficiency while ensuring the accuracy and reliability required to meet the stringent safety and performance standards of aerospace. This document outlines the key applications, technologies, benefits, and future trends of machine tools in the aerospace industry.
Headline
Knowledge
Smart Healthcare Uncovered:How AI Is Transforming Clinical Practice?
With the rapid rise of artificial intelligence (AI), the healthcare industry is undergoing a disruptive transformation. AI is significantly improving diagnostic accuracy and treatment efficiency while profoundly redefining healthcare professionals’ roles and patient experiences. A comprehensive understanding of the core technologies and clinical applications behind this transformation is essential for grasping the future trends and strategic directions of smart healthcare.
Headline
Knowledge
Principle and Applications of Laser Cutting Machines
As the global manufacturing industry advances toward higher precision and efficiency, laser cutting technology has become a key enabler of industrial upgrading. Compared with traditional shearing, stamping, and mechanical cutting, laser cutting offers non-contact processing, higher accuracy, and greater flexibility. It significantly improves productivity while reducing secondary finishing. Today, it is widely adopted in metalworking and increasingly applied in electronics, aerospace, medical, and architectural design industries.
Headline
Knowledge
Why Are High-Quality Cutting Fluids Critical for Machining Quality?
In CNC and metalworking, cutting fluid is no longer just a coolant—it plays a critical role by providing lubrication, chip removal, and corrosion protection. With the right formulation and concentration, it can reduce cutting heat, minimize friction, extend tool life, and maintain workpiece accuracy. High-pressure cooling further enhances efficiency in deep-hole and high-speed machining. The pairing of tool material with the proper cutting fluid is equally crucial; correct selection and maintenance ensure process stability, prolong equipment life, and improve the overall work environment. Cutting fluid has become an indispensable investment in modern precision manufacturing.
Headline
Knowledge
Introduction to Emerging Printing Technologies: Opening New Horizons for the Future of Printing
With rapid technological progress and increasingly diverse market demands, traditional printing techniques are no longer sufficient to meet modern industry’s requirements for precision, efficiency, and sustainability. As a result, emerging technologies such as UV printing, 3D printing, and Nanoimprint Lithography (NIL) have risen to prominence, offering solutions with higher precision, broader applications, and lower production costs. These innovations have already demonstrated value across packaging, advertising, healthcare, semiconductors, and construction. In the following sections, we will explore their technical features and real-world applications, highlighting the advantages and future potential of these cutting-edge printing technologies.
Headline
Knowledge
The Core Standard for Life-Critical Systems: A Complete Guide to IPC Classification
In high-risk fields such as medical, aerospace, and automotive, IPC classifications determine PCB reliability and safety. Class 3 represents the highest standard, requiring zero tolerance for defects, complete via filling, adequate copper annular rings, and rigorous inspections to ensure operation under extreme conditions, while Class 2 suits long-term use in non-critical equipment with minor cosmetic flaws allowed. Class 3’s strict criteria cover component placement, soldering, plating thickness, and environmental testing—adding cost and production time, but far outweighing the risks of failure in life- or safety-critical systems. Thus, defining high-risk equipment as Class 3 during design is essential, making IPC classification a core safeguard rather than an option.
Headline
Knowledge
The Power of Color: How the Printing Industry Protects Brand Quality
In the printing industry, color has always been a core element influencing both quality and sensory experience. Whether in packaging, advertising, or publications, color accuracy directly affects consumer perception and trust in a brand. With the rise of digitalization and globalization, companies increasingly demand brand consistency, making color management more than just an aesthetic concern—it is a safeguard for printing quality and brand value. This article explores the importance of color management, the application of ICC color calibration, and Pantone’s role in brand identity, providing a comprehensive overview of the core knowledge and practical value of color management in printing.
Agree