What is a Work holding System and its Function?
Knowledge

What is a Work holding System and its Function?

Work holding system with reduced setup time and process variability.
Published: Aug 22, 2022
What is a Work holding System and its Function?

What is a Work holding System and its Function?

Clamping element systems are process-standard clamping elements. Straight clamps belong to the so-called mechanical clamping devices, also commonly referred to as clamping jaws. The work holding system consists of vice, a base, and amount. Straight clamps are used in many applications in a variety of industries, such as for holding workpieces on equipment. Designed to maximize clamping force on three-, four- and five-axis machining centers designed to reduce setup time and process variability. Work holding fixtures are designed with a compact, quick-change modular design for accuracy and repeatability.

How can the Workpiece Clamping System Meet the Five-axis Machining Requirements?

For 5-axis machining, the problem with work holding is getting enough access to the part, and the increasing use of 5-axis machining means that other process components, such as work holding, need to be evaluated and clearly understood the function.

  1. Clamping completely from below the workpiece:
    For different parts, the correct choice of workpiece clamping device may be the key to fully utilizing the automatic production capacity of five-axis machining. This work holding system, which was designed to reduce setup time, can now be used in 5-axis machining, not because it enables quick-change clamping, but because it provides a way to clamp parts entirely from below.
    How to adequately contact the part is a problem for part clamping for 5-axis machining. A standard vise covers the sides of the part, and a short vise for 5-axis machining increases the side exposure, but can only clamp along the lower edge of the part. Even custom fixtures for five-axis machining projects have issues that can affect the tool or spindle housing as the entire part and fixture rotate within the work area. However, the method of clamping only the underside of the part can almost hide the workpiece holding device, and the workpiece itself will not cause any interference with the device. The system only needs to use the holes already in the part or add the holes needed to hold the knob to achieve this clamping. The clamping method using the knob and the workpiece receiver makes the system modular and can be applied to parts with uneven bottoms.
  2. Finishing with only five axes:
    Generally, pneumatic clamping is more commonly used, but the workpiece receiving device used in five-axis machining adopts mechanical clamping, which can avoid the danger of entangling the air pipe during the five-axis motion. In this case, the quick-change function of the system can show its advantages even more. Using this workpiece holder and workpiece receiver in multiple machining centers allows roughing to be performed on a lower-cost 3-axis machine tool. The workpiece is taken out of the workpiece receiving device group of the three-axis machine tool, and then quickly transferred to the workpiece receiving device of the five-axis machine tool and clamped, so that the five-axis machine tool can only be used for machining workpieces that require finishing.
  3. Dovetail part clamping:
    Five-axis technology combined with fifth-axis multi-part machining module technology for dovetail part clamping reduces the number of setups required to machine complex parts. Started with 3-axis vertical machining centers, to HMCs with dual 400 mm pallets and standard multi-part machining modules that can hold multiple parts to increase throughput and minimize workpiece contact during complex parts number of times.
    A dovetail connection between workpiece and fixture provides a stronger and more secure interface. To use a dovetail work holding fixture, first machine a 60° dovetail bar on the bottom of the part blank. The blank is then inserted into a jig with jaws provided with angled grooves that mate and engage with the blank dovetail. The strength of the joint requires only a little extra blank at the bottom of the blank to accommodate the dovetail strips, which are removed from the machined workpiece during subsequent milling or laying operations. The resulting machining process for HMC in the factory, suitable for batch production of 200 parts of the same size, is more efficient than running on multiple VMCs.
  4. Five-axis multi-part machining module:
    The five-axis multi-part machining module takes up less space in the work area, has two indexers on the side, and has a flat surface that can accommodate standard fixtures. Each indexer has a dovetail work holding fixture, and the indexer rotation accuracy and repeatability are ±10 degrees and ±5 degrees, respectively. The fifth-axis multi-part machining module features two indexers and a flat area on either side for standard fixtures. In addition to clamping strength, the dovetail work holding port provides the machine tool spindle with easier access to the five sides of the part because there are essentially no fixing elements to avoid. This clearance plus prop positioning perpendicular to the machine tool Z axis makes it possible to use shorter, more rigid cutters.
  5. Block parts processing:
    Block parts are the first to be machined using the five-axis multi-part machining module, which previously required 9 operations on multiple VMCs. Because some true position tolerances are as low as 0.001 and it is touched in many runs on many machine tools, the part scrap rate is 30%. Now it is processed with a five-axis multi-part machining module, 4 pieces per cycle, and the scrap rate is almost zero.
    Decisions must be made in machining to identify the surface to incorporate the dovetail strips for each job. After laying, it is convenient if this face requires the least post-processing operations, but it is necessary to select the face of the datum where the key features are located. Rather than finish machining each part on the indexer before moving on to the next, the HMC is programmed to machine each part in stages. The same operation is then performed on all 4 parts with the same props before changing the tool so that all parts can be followed up in the next operation, the purpose here is to minimize the number of equipment changes to shorten the overall cycle time.
Published by Aug 22, 2022 Source :kknews

Further reading

You might also be interested in ...

Headline
Knowledge
Medical Consumables: Global Guardians of Health
Medical consumables are a wide range of products used by healthcare professionals on a daily basis, typically for a single use before being disposed of. Their primary purpose is to ensure patient care, maintain hygiene, and prevent the spread of infection. These items are crucial for everything from routine checkups to complex surgical procedures.
Headline
Knowledge
Closed Suction System: Revolutionizing Respiratory Care
In critical care, airway management is a vital part of sustaining a patient's life. When patients rely on ventilators, clearing respiratory secretions becomes a crucial aspect of daily care. This seemingly simple, yet critically important, procedure has undergone significant evolution over the past few decades, progressing from early open suctioning to today's more advanced and safer Closed Suction System (CSS).
Headline
Knowledge
Understanding Plastic Materials: A Professional Analysis and Application Guide
Plastic materials, due to their diverse properties and wide range of applications, have become indispensable in modern industries and daily life. Choosing the right plastic material for different needs is crucial for optimizing product performance and achieving environmental benefits. The following is a professional review of the characteristics, applications, and pros and cons of the main plastic materials.
Headline
Knowledge
Exploring Rubber Processing Technology: Core and Challenges of Modern Manufacturing
Rubber processing is one of the most critical stages in modern manufacturing. From vehicle tires to industrial equipment seals and various consumer goods, rubber materials are everywhere. As the demand for high-quality and efficient products rises, rubber processing technologies continue to evolve. This article explores the basic knowledge of rubber processing, key technologies, and future trends.
Headline
Knowledge
Understanding the Coffee Robot: A Comprehensive Analysis
This article provides a comprehensive overview of coffee robots—automated machines that brew and serve coffee using advanced robotics and artificial intelligence. It outlines their key features, including AI-driven customization, app connectivity, 24/7 efficiency, and diverse drink options. The report also examines their growing impact on the coffee industry, highlighting benefits for both consumers and businesses such as convenience, consistency, and reduced labor costs. Case studies like CafeXbot, Artly Coffee, and Rozum Café illustrate how coffee robots are reshaping the coffee experience and driving market growth worldwide.
Headline
Knowledge
Understanding PU Foam: Properties, Types, and Industrial Uses
PU foam is no longer merely a cushioning material. It has become a core functional component across sports, medical, fashion, and lifestyle industries. By adjusting density, thickness, and surface feel, PU can meet diverse requirements for breathability, antimicrobial performance, durability, and comfort. It also aligns with brand trends toward eco-friendly formulations and recyclable material solutions.
Headline
Knowledge
Understanding Helical Filters: A Comprehensive Overview
Helical filters are essential components in radio frequency (RF) and microwave engineering, playing a key role in signal filtering and processing. Known for their compact size, high Q-factor, and broad frequency range, these filters are widely used across various industries. This report provides an in-depth look at helical filters, including their structure, operating principles, advantages, limitations, and typical applications.
Headline
Knowledge
Boost Your Device’s Performance: A Guide to Choosing the Right Power Supply
Choosing the right power supply unit (PSU) is crucial for maximizing your device's performance, ensuring stability, and prolonging the lifespan of your components. A PSU is not just a simple component that provides power; it is the heart of your system that ensures each component receives the right amount of power safely and efficiently. This report will guide you through the essential considerations and steps to select the ideal PSU for your needs.
Headline
Knowledge
How Effective Coolant Management Promotes Sustainable CNC Machining
Sustainable CNC machining increasingly relies on effective coolant management to reduce environmental impact, cut costs, and improve machining performance. Coolants are essential for lubrication, heat control, and chip removal, but improper handling leads to waste and higher expenses. Proper management practices—such as regular monitoring, filtration, recycling, automation, and using eco-friendly coolants—help extend coolant life, maintain machine health, and ensure consistent product quality. Although initial investment may be a barrier, the long-term benefits include cost savings, reduced waste, and enhanced operational efficiency. Future advancements in IoT and AI are expected to further optimize coolant systems, reinforcing sustainability in CNC machining.
Headline
Knowledge
A Complete Guide to Selecting the Ideal Paper Cups for Hot Beverages
This guide provides a detailed overview of how to choose the best paper cups for hot beverages. It explores the different types of cups—single-wall, double-wall, insulated, and eco-friendly—and explains their unique features and ideal use cases. Key factors to consider include beverage temperature, insulation needs, cup size and lid compatibility, environmental impact, and safety standards. The article also outlines best practices for both consumers and businesses to ensure safe use and responsible disposal. Ultimately, selecting the right paper cup depends on balancing functionality, comfort, sustainability, and cost.
Headline
Knowledge
Understanding the Difference Between Reverse Osmosis and Traditional Water Filters
An in-depth comparison between reverse osmosis (RO) and traditional water filters, two widely used methods for purifying drinking water. It outlines how RO uses a semi-permeable membrane to remove dissolved salts, heavy metals, and microorganisms, making it ideal for areas with highly contaminated water. In contrast, traditional filters rely on physical and chemical filtration - often using activated carbon - to improve taste and remove larger particles. While RO systems offer superior contaminant removal, they come with higher costs and water usage. Traditional filters are more affordable and environmentally friendly but less effective against microscopic impurities. The article concludes that the best choice depends on specific water quality needs, and in some cases, combining both systems can offer the most comprehensive solution.
Headline
Knowledge
A Comprehensive Guide to Selecting Cutting Techniques in Plastic Bag Production
This article provides a detailed comparison of hot and cold cutting methods used in plastic bag manufacturing, emphasizing how the choice impacts production efficiency, edge sealing, and material compatibility. Hot cutting uses heated blades to cut and seal simultaneously, making it ideal for leak-proof and high-speed production, while cold cutting offers precise, sharp cuts without heat damage, suitable for a variety of bag types. The selection depends on factors such as material type, production requirements, and environmental considerations. Understanding the strengths and limitations of each method helps manufacturers optimize their processes and meet evolving industry demands.
Agree