What Is Hyper Converge Infrastructure?
Knowledge

What Is Hyper Converge Infrastructure?

The IT room is an indispensable data management center for all companies. It deos not only keep customer information and transaction records, but also provide application systems for employees to perform operations and maintain operations. It also keep important confidential company information. However, building a traditional IT computer room requires a lot of costs and spaces. Because technological breakthroughs and hyper converged architecture technology can help companies to simplify management processes and reduce construction and maintenance costs, it has become the mainstream IT architecture in the future.
Published: Jul 21, 2021
What Is Hyper Converge Infrastructure?

What Is Hyper Converged Infrastructure?

Hyper converged infrastructure (HCI) is a software-defined, unified system that combines all the elements of a traditional data center: storage, compute, networking and management.

"Hyper converged infrastructure" is an IT term that combines the words of "hyper converged" and "infrastructure". Among them, "infrastructure" refers to the provision of computing, storage, network connection, and other infrastructure services for the IT environment. "Hyper convergence" is formed by adding hyper to converged infrastructure, which means that it can provide further integration to converged architecture.

Hyper converge infrastructure integrates computing, virtualization, storage, and networking into a single cluster. Starting from at least three nodes, users can easily expand the scale according to computing and storage resource requirements. Hyper convergence provides cloud-like simplicity in a single platform that can be deployed on-premises and easily managed. The distributed storage of the X86 server is adopted, and the distributed storage and computing virtualization are deployed in the same server hardware, replacing the complex and expensive traditional infrastructure. Enterprises use a hyper converged architecture to expand the number of nodes in the server, and run software in different nodes, and operate all maintenance functions in a unified manner, with excellent performance and flexibility.

The components of the hyper converged architecture:
  • Storage virtualization
  • Computing virtualization
  • Network virtualization
  • Advanced automated management functions

The virtualization software abstracts the underlying resources, creates a pool, and then dynamically allocates the resources to the application running in the virtual machine or container. It is based on the principle of conforming to the application, so no logic unit is required. Complex structures such as numbering and magnetic zones simplify management.

Key technologies of hyper converged architecture:
  • Distributed storage architecture
    Through data cutting, the huge amount of information is scattered and stored in multiple independent devices on the network. These are placed on the X86 server, and a set of convenient expansion kits is constructed, giving a very stable storage resource pool.
  • Solid State Drive SSD
    SSD uses flash memory to store data, speed up the transmission speed, and greatly improve computer performance. SSD has the advantages of being lightweight, low energy consumption, quiet, and shock resistance. The random performance of SSD makes it able to operate at speeds as high as two orders of magnitude higher that other storage devices. Therefore, unlike the traditional three-tier architecture, additional rack space is required for the storage system, so that storage and computing nodes are integrated and easier to manage.
  • Virtualization applications
    Another key technology to realize hyper-converged architecture technology is virtualization. With virtualization technology, distributed storage or storage virtualization solutions can be effectively used to truly utilize the physical hardware that integrates storage and computing on the x86 Server coexistence.
  • Central Processing Unit CPU
    With the development of the CPU, with its higher performance and lower the manufacturing cost, sufficient performance can solve computing and storage requirements at the same time.
Advantages of hyper converged architecture:

The management is simple and convenient, hardware cost and space occupied are reduced.  Flexible expansion capabilities, suitable for developing small and medium-sized enterprises, depending on business needs, expand the system scale potentials.

  • IT efficiency is higher and management is convenient
    The hyper converged architecture can eliminate manual processes making it no longer necessary to rely on dedicated personnel in the IT team for independent management. By adopting a converged IT team, resources can be monitored and managed at the same time. Storage functions can be improved, and IT resources can be dynamically configured in the form of a storage pool, providing the capacity, performance, and protection required by the system.
  • Reduce costs, reduce hardware space, and store more data
    Use the X86 server, the hyper converged architecture can be expanded vertically or horizontally. There is no need to set up a dedicated network, so capital expenditures are reduced. Capacity can be directly increased without the need to increase the hardware configuration, and the system will not be interrupted. With the hyper converged architecture, companies can build data centers of the appropriate scale based on their own needs, avoiding unnecessary system expenditures.
  • Strong expansion capability, suitable for small and medium enterprises
    The hyper converged architecture can quickly respond to business needs. The hardware configuration can be completed in just a few hours, and it can be put into operation within a few minutes to create workloads and improve the performance of key business applications such as relational databases.
  • Simple maintenance
    Due to the high fault tolerance of the hyper converged architecture, the low risk of data loss, and the short impact on the business, coupled with the advantages of a fast recovery and high degree of automation, system maintenance is simpler than traditional architecture.
Features of hyper converged architecture:
  • Uses general-purpose server hardware to form the basic unit
    Uses standard commercially available server hardware to form a basic unit that integrates computing and storage units.
  • Uses hardware resources in a software-defined way
    Uses virtual machine (VM) as the core and software-defined type to use hardware resources. Resource deployment does not involve the adjustment of the configuration settings of the underlying physical hardware. The underlying hardware resources are planned and used purely in a software-defined manner, and then deliver the required resources to the end-user.
  • Clustered architecture
    Through clustering or distributed storage software, multiple basic unit chassis are combined to form a cluster. This cluster provides the necessary hardware, service, and data availability to allow scalability of the IT environment.
  • Easy to deploy quickly
    The product has completed the software and hardware installation test in advance, and the user only needs to set the basic environmental parameters to start using it.

How to use hyper converged architecture?

The use of a hyper converged architecture requires the use of the cloud. There are 3 steps from internal to external to integrate private cloud, public cloud, and hybrid cloud applications:

  • Build a private cloud:
    Building a cloud infrastructure in the internal deployment environment can not only reduce costs, but also allow for more control, and increase the flexibility and agility of enterprises to deploy new applications, and indirectly improve security.
  • Connect to the public cloud:
    Choose to connect the public cloud provided by hyper converged architecture vendors to speed up deployment and reduce infrastructure management time.
  • Adopt hybrid cloud:
    Use the hybrid cloud to manage various virtual machines and container applications in data centers, public clouds, and edge environments.
What challenges can hyper convergence overcome?

Digital transformation is the key to business success. The accompanying requirements include support for huge amounts of data, artificial intelligence (AI), and hybrid cloud while meeting the rapidly increasing demand of traditional workloads. Under the current IT infrastructure, the data center will be inefficient, due to dull permutations and combinations that are difficult to manage. Current data centers cannot meet the rapid improvement needs of enterprises and the cloud. HCI centralizes resources and management, which not only reduces costs and complexity but also reduces the burden on employees while improving efficiency.

Published by Jul 21, 2021 Source :sysweb, Source :ithome

Further reading

You might also be interested in ...

Headline
Knowledge
Medical Consumables: Global Guardians of Health
Medical consumables are a wide range of products used by healthcare professionals on a daily basis, typically for a single use before being disposed of. Their primary purpose is to ensure patient care, maintain hygiene, and prevent the spread of infection. These items are crucial for everything from routine checkups to complex surgical procedures.
Headline
Knowledge
Closed Suction System: Revolutionizing Respiratory Care
In critical care, airway management is a vital part of sustaining a patient's life. When patients rely on ventilators, clearing respiratory secretions becomes a crucial aspect of daily care. This seemingly simple, yet critically important, procedure has undergone significant evolution over the past few decades, progressing from early open suctioning to today's more advanced and safer Closed Suction System (CSS).
Headline
Knowledge
Understanding Plastic Materials: A Professional Analysis and Application Guide
Plastic materials, due to their diverse properties and wide range of applications, have become indispensable in modern industries and daily life. Choosing the right plastic material for different needs is crucial for optimizing product performance and achieving environmental benefits. The following is a professional review of the characteristics, applications, and pros and cons of the main plastic materials.
Headline
Knowledge
Exploring Rubber Processing Technology: Core and Challenges of Modern Manufacturing
Rubber processing is one of the most critical stages in modern manufacturing. From vehicle tires to industrial equipment seals and various consumer goods, rubber materials are everywhere. As the demand for high-quality and efficient products rises, rubber processing technologies continue to evolve. This article explores the basic knowledge of rubber processing, key technologies, and future trends.
Headline
Knowledge
Understanding the Coffee Robot: A Comprehensive Analysis
This article provides a comprehensive overview of coffee robots—automated machines that brew and serve coffee using advanced robotics and artificial intelligence. It outlines their key features, including AI-driven customization, app connectivity, 24/7 efficiency, and diverse drink options. The report also examines their growing impact on the coffee industry, highlighting benefits for both consumers and businesses such as convenience, consistency, and reduced labor costs. Case studies like CafeXbot, Artly Coffee, and Rozum Café illustrate how coffee robots are reshaping the coffee experience and driving market growth worldwide.
Headline
Knowledge
Understanding PU Foam: Properties, Types, and Industrial Uses
PU foam is no longer merely a cushioning material. It has become a core functional component across sports, medical, fashion, and lifestyle industries. By adjusting density, thickness, and surface feel, PU can meet diverse requirements for breathability, antimicrobial performance, durability, and comfort. It also aligns with brand trends toward eco-friendly formulations and recyclable material solutions.
Headline
Knowledge
Understanding Helical Filters: A Comprehensive Overview
Helical filters are essential components in radio frequency (RF) and microwave engineering, playing a key role in signal filtering and processing. Known for their compact size, high Q-factor, and broad frequency range, these filters are widely used across various industries. This report provides an in-depth look at helical filters, including their structure, operating principles, advantages, limitations, and typical applications.
Headline
Knowledge
Boost Your Device’s Performance: A Guide to Choosing the Right Power Supply
Choosing the right power supply unit (PSU) is crucial for maximizing your device's performance, ensuring stability, and prolonging the lifespan of your components. A PSU is not just a simple component that provides power; it is the heart of your system that ensures each component receives the right amount of power safely and efficiently. This report will guide you through the essential considerations and steps to select the ideal PSU for your needs.
Headline
Knowledge
How to Choose the Ideal Wood Screws for Furniture and Cabinetry
Selecting the right wood screws is essential to building strong, stable, and visually appealing furniture or cabinets. Key factors include screw size, length, thread type, head style, and compatibility with different wood materials. Coarse threads suit softwoods, while fine threads are better for hardwoods. Choosing the proper head type ensures both function and aesthetics, while accounting for environmental changes helps maintain joint integrity. Pre-drilling pilot holes can also prevent splitting, especially in dense wood. By understanding these considerations, woodworkers can achieve durable, high-quality results in their projects.
Headline
Knowledge
How Effective Coolant Management Promotes Sustainable CNC Machining
Sustainable CNC machining increasingly relies on effective coolant management to reduce environmental impact, cut costs, and improve machining performance. Coolants are essential for lubrication, heat control, and chip removal, but improper handling leads to waste and higher expenses. Proper management practices—such as regular monitoring, filtration, recycling, automation, and using eco-friendly coolants—help extend coolant life, maintain machine health, and ensure consistent product quality. Although initial investment may be a barrier, the long-term benefits include cost savings, reduced waste, and enhanced operational efficiency. Future advancements in IoT and AI are expected to further optimize coolant systems, reinforcing sustainability in CNC machining.
Headline
Knowledge
A Complete Guide to Selecting the Ideal Paper Cups for Hot Beverages
This guide provides a detailed overview of how to choose the best paper cups for hot beverages. It explores the different types of cups—single-wall, double-wall, insulated, and eco-friendly—and explains their unique features and ideal use cases. Key factors to consider include beverage temperature, insulation needs, cup size and lid compatibility, environmental impact, and safety standards. The article also outlines best practices for both consumers and businesses to ensure safe use and responsible disposal. Ultimately, selecting the right paper cup depends on balancing functionality, comfort, sustainability, and cost.
Headline
Knowledge
Understanding the Difference Between Reverse Osmosis and Traditional Water Filters
An in-depth comparison between reverse osmosis (RO) and traditional water filters, two widely used methods for purifying drinking water. It outlines how RO uses a semi-permeable membrane to remove dissolved salts, heavy metals, and microorganisms, making it ideal for areas with highly contaminated water. In contrast, traditional filters rely on physical and chemical filtration - often using activated carbon - to improve taste and remove larger particles. While RO systems offer superior contaminant removal, they come with higher costs and water usage. Traditional filters are more affordable and environmentally friendly but less effective against microscopic impurities. The article concludes that the best choice depends on specific water quality needs, and in some cases, combining both systems can offer the most comprehensive solution.
Agree