What is Metal Injection Molding (MIM)?
Knowledge

What is Metal Injection Molding (MIM)?

Metal Injection Molded (MIM) is a high-tech near-net-shape technology that combines traditional powder metallurgy and plastic injection molding processes.
Published: Oct 25, 2022
What is Metal Injection Molding (MIM)?

What is Metal Injection Molding?

Metal Injection Molding (MIM) is established by fusing plastic injection molding and powder metallurgy techniques. The powder mix consists of a metal and a polymer binder. Using a standard injection molding machine, melt the powder and inject it into the mold. The part then cools and solidifies into the desired shape. The final product is used in many industries such as medical, dental, aerospace, and automotive.

Metal Powder Injection Molding Technology Basics:

Metal powder injection molding technology is the product of the penetration and intersection of multiple disciplines such as plastic molding technology, polymer chemistry, powder metallurgy technology, and metal materials science. MIM technology overcomes the shortcomings of traditional powder metallurgy products such as low density, uneven material, low mechanical properties, and difficulty in forming thin-walled and complex parts. It is suitable for the mass production of small metal parts with complex shapes, high precision, and high-performance requirements.

MIM metal powder injection molding is the addition of a metal, a ceramic powder is carried out in the production of plastic technology, which makes the product generally have high strength, and good wear characteristics. MIM manufacturing metal powder injection molding technology includes feed preparation, injection molding, computer simulation of the injection molding process, debinding, sintering, etc. The processing process is different from traditional injection molding, which requires vacuum sintering.

MIM, or metal injection molding, is a molding technique generally used to manufacture small, thin, lightweight, or complex metal parts that are used in a variety of industries and applications and possess several desirable metal properties. MIM is typically used by customers who require mass production of metal parts that are precise in size, shape, and weight, and durable in function or aesthetics. MIM technology is applied in powder metallurgy or through metal injection molding to metal rods. Equipment required for MIM injection molding: granulator, MIM special injection molding machine, degreasing furnace, sintering furnace, testing equipment, secondary processing equipment, etc.

MIM metal powder injection molding technology is a set of injection molding technology, polymer chemistry, powder metallurgy technology, metal material science, and other interpenetrating cross products. Which can use mold blanks for injection molding, and quickly manufacture high-density, high-precision, high-density through sintering strength, structural components with complex three-dimensional shapes. Especially for small parts that are processed by complex shape processing technology or are difficult to process, MIM metal powder injection molding technology can be freely completed. Metal powder injection molding is a new type of powder metallurgy technology with high technical content, making it more sensitive to the needs of mechanized production, good practicability, and good conversion rate, and has been widely used. The use of mold injection molding blanks and rapid production of high-density, high-precision, three-dimensional complex-shaped structural parts. Through sintering can quickly and accurately materialize design ideas into products with certain structural and functional characteristics, and directly mass-produce parts. It is a new revolution in the manufacturing technology industry.

The Whole Process of MIM Technology:

  • Kneading: Mix the fine metal powder and organic binder uniformly to become an injection material with good rheological properties.
  • Molding: The advanced MIM special injection machine is used to inject the injection material into the mold cavity with the shape of the part to form a blank. The process steps are similar to plastic injection molding.
  • Debonding: The binder is removed from the green body by chemical solvent dissolution and thermal decomposition to become a gray body.
  • Sintering: The ash blank is heated to a temperature lower than the melting point of the basic components in a certain atmosphere, so that the strength and density of the sintered body increase, and it becomes a product and material with good physical and mechanical properties.
  • Post-processing: According to the needs of the product, follow-up processing, such as heat treatment, surface treatment, etc., is carried out.

MIM Technical Advantages:

  • Added complexity, thinner, stiffer, denser, and more flexible designs.
  • Better mechanical properties and strength than CNC machining and casting.
  • More efficient than CNC machining, less waste is generated in the process, and most of them can be recycled or reused.
  • Better surface finish than casting and traditional forging.
  • Widely used in different metals and advanced materials.

Application Areas of MIM Technology:

  • Computer and its auxiliary facilities: Such as printer parts, magnetic cores, striker pins, and drive parts.
  • Tools: Such as drill bits, cutter heads, nozzles, gun drills, spiral milling cutters, punches, sockets, wrenches, electrical tools, hand tools, etc.
  • Household appliances: Such as watch cases, watch chains, electric toothbrushes, scissors, fans, golf heads, jewelry links, ballpoint pen clamps, cutting tool heads, and other parts.
  • Parts for medical machinery: Such as orthodontic frames, scissors, and tweezers.
  • Military parts: Missile tail, gun parts, warhead, medical cover, fuze parts.
  • Electrical parts: Electronic packaging, micro motors, electronic parts, sensor parts.
  • Mechanical parts: Such as cotton loosening machines, textile machines, crimping machines, office machinery, etc.
  • Parts for automobiles and ships: Such as clutch inner ring, fork sleeve, distributor sleeve, valve guide, synchronous hub, airbag parts, etc.

Difference Between MIM and Casting:

Metal injection molding is suitable to produce small and complex metal parts that cannot be produced by traditional processes. This is not a problem if the part has intricated, thin, or fine design details. The metal does not melt in the MIM process as you know it in the metal casting process, extending tool life.

Why choose MIM overcasting? The biggest difference between casting and metal injection molding is that casting uses aluminum alloys or zinc alloys as raw materials. Metal injection molding, on the other hand, uses steel or other types of suitable MIM alloys. The most common are stainless steel, titanium, nickel, tungsten, copper, and combinations thereof. At the end of the die-casting process, the excess metal must be trimmed manually or passed through a different mold. This creates a lot of waste and requires extra time, which is not the case with MIM processes. Both MIM and casting have their technical advantages and disadvantages, and the right solution can be selected based on product or part design, batch, and production run requirements.

Published by Oct 25, 2022 Source :read01

Further reading

You might also be interested in ...

Headline
Knowledge
Medical Consumables: Global Guardians of Health
Medical consumables are a wide range of products used by healthcare professionals on a daily basis, typically for a single use before being disposed of. Their primary purpose is to ensure patient care, maintain hygiene, and prevent the spread of infection. These items are crucial for everything from routine checkups to complex surgical procedures.
Headline
Knowledge
Closed Suction System: Revolutionizing Respiratory Care
In critical care, airway management is a vital part of sustaining a patient's life. When patients rely on ventilators, clearing respiratory secretions becomes a crucial aspect of daily care. This seemingly simple, yet critically important, procedure has undergone significant evolution over the past few decades, progressing from early open suctioning to today's more advanced and safer Closed Suction System (CSS).
Headline
Knowledge
Understanding Plastic Materials: A Professional Analysis and Application Guide
Plastic materials, due to their diverse properties and wide range of applications, have become indispensable in modern industries and daily life. Choosing the right plastic material for different needs is crucial for optimizing product performance and achieving environmental benefits. The following is a professional review of the characteristics, applications, and pros and cons of the main plastic materials.
Headline
Knowledge
Exploring Rubber Processing Technology: Core and Challenges of Modern Manufacturing
Rubber processing is one of the most critical stages in modern manufacturing. From vehicle tires to industrial equipment seals and various consumer goods, rubber materials are everywhere. As the demand for high-quality and efficient products rises, rubber processing technologies continue to evolve. This article explores the basic knowledge of rubber processing, key technologies, and future trends.
Headline
Knowledge
Understanding the Coffee Robot: A Comprehensive Analysis
This article provides a comprehensive overview of coffee robots—automated machines that brew and serve coffee using advanced robotics and artificial intelligence. It outlines their key features, including AI-driven customization, app connectivity, 24/7 efficiency, and diverse drink options. The report also examines their growing impact on the coffee industry, highlighting benefits for both consumers and businesses such as convenience, consistency, and reduced labor costs. Case studies like CafeXbot, Artly Coffee, and Rozum Café illustrate how coffee robots are reshaping the coffee experience and driving market growth worldwide.
Headline
Knowledge
Understanding PU Foam: Properties, Types, and Industrial Uses
PU foam is no longer merely a cushioning material. It has become a core functional component across sports, medical, fashion, and lifestyle industries. By adjusting density, thickness, and surface feel, PU can meet diverse requirements for breathability, antimicrobial performance, durability, and comfort. It also aligns with brand trends toward eco-friendly formulations and recyclable material solutions.
Headline
Knowledge
Understanding Helical Filters: A Comprehensive Overview
Helical filters are essential components in radio frequency (RF) and microwave engineering, playing a key role in signal filtering and processing. Known for their compact size, high Q-factor, and broad frequency range, these filters are widely used across various industries. This report provides an in-depth look at helical filters, including their structure, operating principles, advantages, limitations, and typical applications.
Headline
Knowledge
Boost Your Device’s Performance: A Guide to Choosing the Right Power Supply
Choosing the right power supply unit (PSU) is crucial for maximizing your device's performance, ensuring stability, and prolonging the lifespan of your components. A PSU is not just a simple component that provides power; it is the heart of your system that ensures each component receives the right amount of power safely and efficiently. This report will guide you through the essential considerations and steps to select the ideal PSU for your needs.
Headline
Knowledge
How to Choose the Ideal Wood Screws for Furniture and Cabinetry
Selecting the right wood screws is essential to building strong, stable, and visually appealing furniture or cabinets. Key factors include screw size, length, thread type, head style, and compatibility with different wood materials. Coarse threads suit softwoods, while fine threads are better for hardwoods. Choosing the proper head type ensures both function and aesthetics, while accounting for environmental changes helps maintain joint integrity. Pre-drilling pilot holes can also prevent splitting, especially in dense wood. By understanding these considerations, woodworkers can achieve durable, high-quality results in their projects.
Headline
Knowledge
How Effective Coolant Management Promotes Sustainable CNC Machining
Sustainable CNC machining increasingly relies on effective coolant management to reduce environmental impact, cut costs, and improve machining performance. Coolants are essential for lubrication, heat control, and chip removal, but improper handling leads to waste and higher expenses. Proper management practices—such as regular monitoring, filtration, recycling, automation, and using eco-friendly coolants—help extend coolant life, maintain machine health, and ensure consistent product quality. Although initial investment may be a barrier, the long-term benefits include cost savings, reduced waste, and enhanced operational efficiency. Future advancements in IoT and AI are expected to further optimize coolant systems, reinforcing sustainability in CNC machining.
Headline
Knowledge
A Complete Guide to Selecting the Ideal Paper Cups for Hot Beverages
This guide provides a detailed overview of how to choose the best paper cups for hot beverages. It explores the different types of cups—single-wall, double-wall, insulated, and eco-friendly—and explains their unique features and ideal use cases. Key factors to consider include beverage temperature, insulation needs, cup size and lid compatibility, environmental impact, and safety standards. The article also outlines best practices for both consumers and businesses to ensure safe use and responsible disposal. Ultimately, selecting the right paper cup depends on balancing functionality, comfort, sustainability, and cost.
Headline
Knowledge
Understanding the Difference Between Reverse Osmosis and Traditional Water Filters
An in-depth comparison between reverse osmosis (RO) and traditional water filters, two widely used methods for purifying drinking water. It outlines how RO uses a semi-permeable membrane to remove dissolved salts, heavy metals, and microorganisms, making it ideal for areas with highly contaminated water. In contrast, traditional filters rely on physical and chemical filtration - often using activated carbon - to improve taste and remove larger particles. While RO systems offer superior contaminant removal, they come with higher costs and water usage. Traditional filters are more affordable and environmentally friendly but less effective against microscopic impurities. The article concludes that the best choice depends on specific water quality needs, and in some cases, combining both systems can offer the most comprehensive solution.
Agree