What are the Spindle Motor and its Working Principle and Structure?
Knowledge

What are the Spindle Motor and its Working Principle and Structure?

The mechanical structure of the main drive system of the CNC machine tool has been greatly simplified, and the belt drive and gear drive have been canceled. Zero drive of the machine.
Published: Sep 06, 2022
What are the Spindle Motor and its Working Principle and Structure?

What is a Spindle Motor?

The spindle motor is also called a high-speed motor, which refers to an AC motor with a rotational speed of more than 10,000 rpm/min. Mainly used in wood, aluminum, stone, hardware, glass, PVC, and other industries. Spindle motors have the advantages of high speed, small size, lightweight, low material consumption, low noise, low vibration, etc., and are increasingly valued and applied by related industries. Because the spindle motor is widely used, coupled with its meticulous workmanship, fast speed, and high processing quality of the motor, other ordinary motors cannot meet the technical requirements of the spindle motor and play an important role in the industrial production process. This technology is used in electric power, missile, aviation, and other industries. Due to the high technical requirements of the industry, high-quality, high-tech, and high-precision spindle motors are required. The motor has large torque, low noise, stable speed, high frequency, speed regulation, small no-load current, slow heating, fast heat dissipation, convenient use, and long life.

The Working Principle of the Electric Spindle:

The phases of the windings of the high-speed electric spindle motor are 120° different from each other. After the three-phase alternating current is applied, the three-phase windings each form a sinusoidal alternating magnetic field. The magnetic field rotates at a constant speed in a certain direction, the magnetic field speed is the synchronous speed of the electric spindle. The synchronous speed n of the asynchronous motor is determined by the frequency f of the input motor stator winding current and the number of pole pairs P of the motor stator (n=60f/p). The electric spindle is to obtain various speeds by transforming the frequency and excitation voltage of the current input to the stator winding of the motor. In the process of acceleration and braking, acceleration and deceleration are performed by changing the frequency to avoid an excessive temperature rise of the motor. Since the direction of the rotating magnetic field of the motor depends on the phase sequence of the three-phase alternating current input to the stator, changing the phase sequence of the input current of the motorized spindle can change the rotation direction of the motorized spindle.

The Related Structure and Function of the Electric Spindle:

The electric spindle is a new technology that integrates the machine tool spindle and the spindle motor in the field of CNC machine tools in recent years. Together with the linear motor technology and high-speed tool technology, it will push high-speed machining into a new era. The electric spindle is a set of components, which includes the electric spindle itself and its accessories: electric spindle, high-frequency frequency conversion device, oil mist lubricator, cooling device, built-in encoder, and tool changer. The electric spindle itself directly mounts the hollow motor rotor on the main shaft, and the stator is fixed in the hole of the main shaft case through the cooling jacket to form a complete shaft unit. After power-on, the rotor directly drives the main shaft to run.

  • The technology integrated with the electric spindle is high-speed bearing technology: The electric spindle usually adopts composite ceramic bearings, which are wear-resistant and heat-resistant, and have a service life several times that of traditional bearings. Sometimes electromagnetic suspension bearings or hydrostatic bearings are also used, the inner and outer rings are not in contact, and the theoretical life is infinite.
  • High-speed motor technology: The electro-spindle is the product of the fusion of the motor and the main shaft. The rotor of the motor is the rotating part of the main shaft. In theory, the electro-spindle can be regarded as a high-speed motor. The key technology is dynamic balancing at high speeds.
  • Lubrication: The lubrication of the electric spindle generally adopts regular quantitative oil and gas lubrication, and grease lubrication can be used, but the corresponding speed will be reduced. The so-called timing is to inject oil every certain time interval. The so-called quantitative is to accurately control the amount of lubricating oil each time through a device called a quantitative valve. Oil-air lubrication means that the lubricating oil is blown into the ceramic bearing under the carry of compressed air. Oil quantity control is important. If it is too small, it will not be able to lubricate. If it is too large, it will heat up due to the resistance of the oil when the bearing rotates at high speed.
  • Cooling device: To dissipate heat to the high-speed electric spindle as soon as possible, a circulating coolant is usually passed to the outer wall of the electric spindle. The function of the cooling device is to maintain the temperature of the coolant.
  • Built-in pulse encoder: To realize automatic tool change and rigid tapping, the electric spindle has a built-in pulse encoder to achieve accurate phase angle control and coordination with the feed.
  • Automatic tool changer: To be applied to the machining center, the electric spindle is equipped with an automatic tool changer, including disc springs, broach cylinders, etc.
  • The mounting method of high-speed tools: HSK, SKI, and other high-speed tools are mainly used.
  • High-frequency frequency conversion device: To achieve the speed of tens of thousands or even hundreds of thousands of revolutions per minute of the electric spindle. A high-frequency frequency conversion device must be used to drive the built-in high-speed motor of the electric spindle, and the output frequency of the frequency converter must reach thousands or thousands of hertz.

The Difference Between the Servo Motor and Spindle Motor:

  1. CNC machine tools have different requirements for spindle motors and servo motors:
    The requirements for the feed servo motor are:
    • Mechanical characteristics: The speed drop and rigidity of the servo motor are required to be small.
    • Requirements for fast response: This is more stringent in contour processing, especially for high-speed machining of objects with large curvature.
    • Speed regulation range: This can make the CNC machine tool suitable for various tools and processing materials. It is suitable for various processing technologies.
    • A certain output torque and a certain overload torque is required: The nature of the machine tool's mechanical load is mainly to overcome the friction of the worktable and the resistance of cutting, so it is the nature of constant torque.
    The requirements for high-speed motorized spindles are:
    • Sufficient output power, the loaded nature of the spindle of the CNC machine tool is similar to constant power. When the speed of the motorized spindle of the machine tool is high, the output torque is small. When the spindle speed is low, the output torque is large. The shaft drive is required to have the property of constant power.
    • Speed regulation range: To ensure that the CNC machine tool is suitable for various tools and processing materials. It is suitable for various processing technologies, and the spindle motor is required to have a certain speed regulation range. But the requirements for the spindle are lower than the feed.
    • Speed accuracy: The static difference is generally required to be less than 5%, and the higher requirement is less than 1%.
    • Fast: The spindle drive is sometimes used in the positioning function, which requires it to be fast.
  2. The output indicators of the servo motor and the spindle motor are different:
    The Servo motor takes torque (N.m), and the spindle takes power (kW) as the index. The servo motor drives the worktable of the machine tool, and the load damping of the worktable is the torque converted to the motor shaft, so the servo motor takes the torque (N.m) as the index. The spindle motor drives the spindle of the machine tool, and its load must meet the power of the machine tool, so the spindle motor takes the power (kW) as the index. But through the conversion of the mechanical formula, the two indicators can be calculated mutually.
Published by Sep 06, 2022 Source :baike, Source :xuehua

Further reading

You might also be interested in ...

Headline
Knowledge
Medical Consumables: Global Guardians of Health
Medical consumables are a wide range of products used by healthcare professionals on a daily basis, typically for a single use before being disposed of. Their primary purpose is to ensure patient care, maintain hygiene, and prevent the spread of infection. These items are crucial for everything from routine checkups to complex surgical procedures.
Headline
Knowledge
Closed Suction System: Revolutionizing Respiratory Care
In critical care, airway management is a vital part of sustaining a patient's life. When patients rely on ventilators, clearing respiratory secretions becomes a crucial aspect of daily care. This seemingly simple, yet critically important, procedure has undergone significant evolution over the past few decades, progressing from early open suctioning to today's more advanced and safer Closed Suction System (CSS).
Headline
Knowledge
Understanding Plastic Materials: A Professional Analysis and Application Guide
Plastic materials, due to their diverse properties and wide range of applications, have become indispensable in modern industries and daily life. Choosing the right plastic material for different needs is crucial for optimizing product performance and achieving environmental benefits. The following is a professional review of the characteristics, applications, and pros and cons of the main plastic materials.
Headline
Knowledge
Exploring Rubber Processing Technology: Core and Challenges of Modern Manufacturing
Rubber processing is one of the most critical stages in modern manufacturing. From vehicle tires to industrial equipment seals and various consumer goods, rubber materials are everywhere. As the demand for high-quality and efficient products rises, rubber processing technologies continue to evolve. This article explores the basic knowledge of rubber processing, key technologies, and future trends.
Headline
Knowledge
Understanding the Coffee Robot: A Comprehensive Analysis
This article provides a comprehensive overview of coffee robots—automated machines that brew and serve coffee using advanced robotics and artificial intelligence. It outlines their key features, including AI-driven customization, app connectivity, 24/7 efficiency, and diverse drink options. The report also examines their growing impact on the coffee industry, highlighting benefits for both consumers and businesses such as convenience, consistency, and reduced labor costs. Case studies like CafeXbot, Artly Coffee, and Rozum Café illustrate how coffee robots are reshaping the coffee experience and driving market growth worldwide.
Headline
Knowledge
Understanding PU Foam: Properties, Types, and Industrial Uses
PU foam is no longer merely a cushioning material. It has become a core functional component across sports, medical, fashion, and lifestyle industries. By adjusting density, thickness, and surface feel, PU can meet diverse requirements for breathability, antimicrobial performance, durability, and comfort. It also aligns with brand trends toward eco-friendly formulations and recyclable material solutions.
Headline
Knowledge
Understanding Helical Filters: A Comprehensive Overview
Helical filters are essential components in radio frequency (RF) and microwave engineering, playing a key role in signal filtering and processing. Known for their compact size, high Q-factor, and broad frequency range, these filters are widely used across various industries. This report provides an in-depth look at helical filters, including their structure, operating principles, advantages, limitations, and typical applications.
Headline
Knowledge
Boost Your Device’s Performance: A Guide to Choosing the Right Power Supply
Choosing the right power supply unit (PSU) is crucial for maximizing your device's performance, ensuring stability, and prolonging the lifespan of your components. A PSU is not just a simple component that provides power; it is the heart of your system that ensures each component receives the right amount of power safely and efficiently. This report will guide you through the essential considerations and steps to select the ideal PSU for your needs.
Headline
Knowledge
How to Choose the Ideal Wood Screws for Furniture and Cabinetry
Selecting the right wood screws is essential to building strong, stable, and visually appealing furniture or cabinets. Key factors include screw size, length, thread type, head style, and compatibility with different wood materials. Coarse threads suit softwoods, while fine threads are better for hardwoods. Choosing the proper head type ensures both function and aesthetics, while accounting for environmental changes helps maintain joint integrity. Pre-drilling pilot holes can also prevent splitting, especially in dense wood. By understanding these considerations, woodworkers can achieve durable, high-quality results in their projects.
Headline
Knowledge
How Effective Coolant Management Promotes Sustainable CNC Machining
Sustainable CNC machining increasingly relies on effective coolant management to reduce environmental impact, cut costs, and improve machining performance. Coolants are essential for lubrication, heat control, and chip removal, but improper handling leads to waste and higher expenses. Proper management practices—such as regular monitoring, filtration, recycling, automation, and using eco-friendly coolants—help extend coolant life, maintain machine health, and ensure consistent product quality. Although initial investment may be a barrier, the long-term benefits include cost savings, reduced waste, and enhanced operational efficiency. Future advancements in IoT and AI are expected to further optimize coolant systems, reinforcing sustainability in CNC machining.
Headline
Knowledge
A Complete Guide to Selecting the Ideal Paper Cups for Hot Beverages
This guide provides a detailed overview of how to choose the best paper cups for hot beverages. It explores the different types of cups—single-wall, double-wall, insulated, and eco-friendly—and explains their unique features and ideal use cases. Key factors to consider include beverage temperature, insulation needs, cup size and lid compatibility, environmental impact, and safety standards. The article also outlines best practices for both consumers and businesses to ensure safe use and responsible disposal. Ultimately, selecting the right paper cup depends on balancing functionality, comfort, sustainability, and cost.
Headline
Knowledge
Understanding the Difference Between Reverse Osmosis and Traditional Water Filters
An in-depth comparison between reverse osmosis (RO) and traditional water filters, two widely used methods for purifying drinking water. It outlines how RO uses a semi-permeable membrane to remove dissolved salts, heavy metals, and microorganisms, making it ideal for areas with highly contaminated water. In contrast, traditional filters rely on physical and chemical filtration - often using activated carbon - to improve taste and remove larger particles. While RO systems offer superior contaminant removal, they come with higher costs and water usage. Traditional filters are more affordable and environmentally friendly but less effective against microscopic impurities. The article concludes that the best choice depends on specific water quality needs, and in some cases, combining both systems can offer the most comprehensive solution.
Agree