Ceramic Injection Molding (CIM) Reshaping Ceramic Manufacturing
Knowledge

Ceramic Injection Molding (CIM) Reshaping Ceramic Manufacturing

Powder injection molding (PIM), including metal injection molding (MIM) and ceramic injection molding (CIM), is a one-shot molding technology that combines high throughput and high precision. This technology has been widely used in many industries to produce various precision parts.
Published: Jul 14, 2023
Ceramic Injection Molding (CIM) Reshaping Ceramic Manufacturing

What Is Ceramic Injection Molding Technology (CIM)?

Ceramic Injection Molding (CIM) is a new process for preparing ceramic parts developed by combining the polymer injection molding method with the ceramic preparation process. CIM technology is similar to metal injection molding (MIM) technology. They are the main branches of powder injection molding (PIM) technology and are developed based on relatively mature polymer injection molding technology. For mass production of ceramic products with high dimensional accuracy and complex shapes, the use of ceramic powder molding is the most advantageous.

The ceramic injection molding technology is to add thermoplastic resin, thermosetting resin, plasticizer, and anti-friction agent to the ceramic powder to make the ceramic powder into a viscous elastomer, and then inject the heated and mixed chain slurry into the metal mold from the nozzle. Commonly used thermoplastic resins are polyethylene, polystyrene, and polypropylene, and the additional amount is 10%~30%. CIM technology can achieve the appearance that the traditional dry pressing process cannot achieve, and the product can almost not be restricted by appearance.

Features of Ceramic Injection Molding Technology (CIM)

Advantages:
  • The molding process has the characteristics of a high degree of mechanization and automation, high production efficiency, short molding cycle, and high blank strength, and its process can be precisely controlled by the program, which is easy to achieve large-scale and large-scale production.
  • It can nearly net shape various small ceramic parts with complex geometric shapes and special requirements, so that the sintered ceramic products do not need to be machined or less processed, thereby reducing the expensive ceramic processing cost.
  • The formed ceramic products have extremely high dimensional accuracy and surface finish.
Disadvantages:
  • One-time equipment investment and processing costs are high, and it is only suitable for mass production.

The Process Flow and Process of Ceramic Injection Molding (CIM)

  • Feeding preparation:
    The feed is a mixture of powder and binder. The injection process requires the injection feed to have good fluidity, which requires the selection of powders that meet the requirements and an appropriate binder system, and a certain loading ratio at a certain temperature. Injection molding feeds, to ensure the smooth progress of the subsequent process, and its products may go from the laboratory to the high-tech market. So, feed preparation is critical in the whole process.
  • Injection molding and mold design:
    Improper control of the injection molding process can lead to the formation of many defects in the product, such as cracks, pores, welds, delamination, powder, and binder separation, etc., which cannot be detected until debinding and sintering. CIM often uses multi-cavity molds. The dimensions of each cavity are different, and the wear of the cavity in use will lead to different sizes of parts. In addition, the use of injection return material can affect viscosity and rheology. Therefore, controlling and optimizing molding parameters such as injection temperature, mold temperature, injection pressure, and pressure holding time is crucial to reducing the fluctuation of green body weight, preventing the separation and segregation of components in the injection material, and improving product yield and material utilization. The mold design of CIM technology mainly considers the flow control of the feed material in the mold cavity during injection molding. Because most CIM products are small-sized parts with complex shapes and high precision requirements, it is necessary to carefully design and arranges the position of the feed port, the length of the runner, and the position of the exhaust hole. Of course, mold design requires a clear understanding of feed rheological properties, cavity temperature, and residual stress distribution. In addition, computer simulation technology will play an important role in powder injection molding mold design.
  • Degreasing process:
    Degreasing is the process of removing organic matter from the molding body and producing a small amount of sintering by heating and other physical methods. Compared to batching, molding, sintering, and post-processing of ceramic parts, debinding is the most difficult and important factor in injection molding. Incorrect process methods and parameters of the debinding process cause inconsistent product shrinkage, resulting in deformation, cracking, stress, and inclusions. Debinding is important for subsequent sintering, and cracks and deformations that occur during debinding cannot be compensated for by sintering. Binder and degreasing are linked together to determine the way of degreasing. In addition to traditional thermal degreasing and solvent degreasing, the current degreasing process also includes catalytic degreasing and water-based extraction degreasing developed in recent years.
  • Sintering:
    The degreasing ceramic green body is densified and sintered at high temperature to obtain dense ceramic parts with desired appearance, shape, dimensional accuracy, and microstructure. Since the ceramic injection molding blank contains pores left by degreasing, the product shrinkage rate is relatively large during sintering, usually reaching 13%-15%. The research focus of CIM technology is the precision control of sintered dimensions. In addition, sintering equipment is also the key to sintering technology.

Applications of CIM Ceramic Injection Molding

Injection molding technology has been applied to the preparation of various high-performance ceramic products. Such as ceramic medical devices in the biomedical field, ceramic brackets, and ceramic dental posts for dental orthodontics and restoration. Zirconia ceramic ferrules and ceramic sleeves for optical communications. Alumina insulating ceramic components are used in the semiconductor and electronics industries, such as integrated circuit high-encapsulation tubes, small vacuum switch ceramic tubes, and small ceramic sliding shafts. Ceramic knives, ceramic bracelets, and ceramic cases are used in modern life and watchmaking. Turbine rotors, blades, aircraft, spacecraft bearings, rocket nose cones, etc. in the aerospace industry. Automotive engines, valves, pistons, turbocharger rotors, nozzles, etc. in the automotive industry.

Published by Jul 14, 2023 Source :read01

Further reading

You might also be interested in ...

Headline
Knowledge
Understanding the Logistics and Transportation Sector
As the number of e-commerce transactions continues to surge, there is a parallel increase in the demand for logistics services. Amidst the ongoing transformation and upgrade of the industry, the integration of smart technology has emerged as a pivotal factor in driving its development.
Headline
Knowledge
Understanding Mechanism Design and Its Practical Applications
Creating an effective mechanism design entails thoughtful consideration of factors such as materials, specifications, precision, manufacturing processes, and functionality. Moreover, it must be cost-effective to ensure the development of a successful mechanism design.
Headline
Knowledge
Understanding the Granulation Process
Plastic granulation technology plays a pivotal role in the manufacturing of plastic products and the recycling of resources. It is employed to produce a diverse range of plastic products or raw materials, offering both environmental and economic advantages.
Headline
Knowledge
What Constitutes Contemporary Architectural Frameworks for Robotic Computing?
The behavior of robots is frequently modeled as a computational graph, wherein data flows from sensors to computational technology, extending to actuators and then looping back. To enhance performance capabilities, robotic computing platforms need to adeptly map these graph-like structures to CPUs and specialized hardware, such as FPGAs and GPUs.
Headline
Knowledge
How Does the Electroplating Process Work for ABS Plastic?
Over the past few years, plastic electroplating has gained widespread popularity, particularly in the decorative electroplating of plastic components. Among the various types of plastic utilized in electroplating, ABS plastic stands out as the most extensively employed.
Headline
Knowledge
Anticipating the Emerging Trends in the Global Laser Industry
In light of the evolving global industry demands, the laser industry and technology are shifting their focus towards meeting the requirements of 5G semiconductors and smart vehicle processes. While Taiwan's laser industry has a well-established foundation built over the years, sustaining international competitiveness necessitates a proactive advancement in independent laser technology.
Headline
Knowledge
Selecting a Hydraulic Press and Understanding its Manufacturing Procedure
Hydraulic presses find applications in compaction, assembly, pressing, forming, embossing, and stretching. They play a crucial role in compaction within the cosmetics sector, assembly in the automotive industry, molding of electronic products, and stamping in the home appliance industry.
Headline
Knowledge
Introduction to RFID Tags: The Significance of RFID in Modern Retail Supply Chains
There are two types of RFID systems: passive and active. For those unfamiliar with RFID, you may be curious about the distinctions between these types and which one suits your application best. In the following, we offer a brief explanation.
Headline
Knowledge
Anticipating the Emerging Trends in the Global Laser Industry
In light of the evolving global industrial demands, the laser industry and technology are shifting towards meeting the requirements of 5G semiconductors and advanced processes for smart vehicles. While Taiwan's laser industry has made substantial progress over the years, maintaining alignment with international advancements necessitates a proactive push in independent laser technology.
Headline
Knowledge
Comprehending CNC Motion Control and Three Common Types
The primary advantage provided by various types of CNC machine tools is enhanced automation, as it allows for the reduction or elimination of operator intervention in the production of workpieces.
Headline
Knowledge
How is Automatic Optical Inspection (AOI) Technology involved?
What is AOI? AOI stands for automatic optical inspection technology, known for its non-contact nature, rapid speed, high precision, and stability. This technology effectively addresses the limitations of manual visual inspection in quality management.
Headline
Knowledge
What Constitutes a Planing Machine?
A shaper is a machine tool that employs the relative linear motion between a workpiece and a single-point cutting tool to shape a linear toolpath. Its cutting process is similar to that of a lathe, but it typically follows a linear, as opposed to a helical, trajectory.
Agree