The Pursuit of Low-Error and High-Precision Machine Precision
Knowledge

The Pursuit of Low-Error and High-Precision Machine Precision

To maintain the accuracy of finished products in the manufacturing industry, rapid detection and adjustment of machine tool performance is essential.
Published: Jan 21, 2022
The Pursuit of Low-Error and High-Precision Machine Precision
Definition of precision:

Generally speaking, accuracy refers to the ability of the machine tool to position the tool's nose point to the programmed target point. However, there are many ways to measure this positioning capability, and more importantly, different countries have different regulations.

  • Japanese machine tool manufacturers: When calibrating "accuracy", JISB6201 JISB6336 or JISB6338 standards are usually used. JISB6201 is generally used for general-purpose machine tools and ordinary CNC machine tools, JISB6336 is generally used for machining centers, and JISB6338 is generally used for vertical machining centers.
  • European machine tool manufacturers: Especially German manufacturers, generally adopt the VDI/DGQ3441 standard.
  •  American machine tool manufacturers: Usually use the NMTBA (National Machine Tool Builder's Assn) standard.

Error sources and precision challenges of machine tools:

The final accuracy of a machine is shown by the accumulation of all possible errors.

Nowadays, the precision machinery industry has higher and higher requirements for the accuracy of finished products. In intelligent machinery and manufacturing research technology, predicting processing quality through machine conditions is an important development topic. However, regardless of the type, specification, workload, and working accuracy of the machine tool, even for the most excellent CNC machine tool, the positioning accuracy will gradually decrease over time, resulting in errors. Therefore, to ensure consistent quality of components, reduce material waste, and achieve higher production efficiency, rapid inspection and adjustment of CNC machine tool performance is necessary.

The sources of error in tool machining performance are:

  1. Error of mechanical structure:
    The movement of the structure under its weight and load will cause the material to deform to different degrees, resulting in errors; the size of the structural error can be known by the finite element method analysis during design.
  2. Error of transmission system:
    The error of the fitting clearance between the screw, the line rail, and the slider, as well as the C1 level screw pitch should be within 5μm, and the highest level of the line rail (UP level) should have an error of less than 2μm between its two parallel surfaces. However, for high-precision machinery, the whole machine design and assembly needs to find a way to eliminate these total errors and to achieve the final high-precision requirements within ±3μm.
  3. Error of feedback and control:
    The controller commands the output to drive the motor and uses the optical scale to receive feedback. The best existing optical scale guarantees that the error can be maintained within 3μm, but this error is determined by the accuracy of the optical scale. As long as there is no problem with the optical scale assembly, the error is fixed and can be eliminated by the error compensation of the controller.
  4. Assembly error:
    The straightness, perpendicularity, parallelism, flatness of the machine, and the total error of each part and moving component are generally maintained within 5μm, which is a good error range.
  5. Error of temperature:
    Every time the temperature rises by 1°C, it will affect the amount of deformation of iron by 11.7μm /m. During the processing, local thermal deformation occurs due to the conversion of energy, resulting in thermal deformation of the tool or workpiece, requiring compensation by the machine tool. Even with the thermal compensation function, it is only a large-scale compensation, and cannot be used for small-area compensation. The best method for high-precision machining is to control the temperature rise of the machining so that the change is less than 0.5 °C so that the accuracy can be maintained.
  6. Deformation of materials:
    After the material is cast, there will be extensive internal deformation, and if the material is not tempered its deformation can be large. Material conditioning is required.
  7. Fixture and human operation error:
    Whether the fixture is symmetrical during processing, whether the clamping force is uniform, and whether there is vibration in the environment or other interference factors will affect the processing accuracy.
  8. Other errors (such as measurement or environmental factors):
     In the design of the whole machine, it is necessary to consider that the total median error value should be offset by differences of positive and negative errors. Errors can be reduced by compensation, thus improving the overall accuracy of the machine. The real difficulty is that these errors vary, that is, the distribution range of their standard deviations is too large to be controlled. With dozens of error sources, to maintain a total error variation of ±3μm, the variation of each error needs to be controlled within 1μm.  Maintaining the overall machine accuracy by controlling these many error sources is the difficult challenge.

Therefore, Taiwan's machine tool industry must continually improve as a whole. To beat competition, machine production factories as well as component and machining suppliers and partners must work together to improve manufacturing accuracy.

Published by Jan 21, 2022 Source :maonline

Further reading

You might also be interested in ...

Headline
Knowledge
Smart Healthcare Uncovered:How AI Is Transforming Clinical Practice?
With the rapid rise of artificial intelligence (AI), the healthcare industry is undergoing a disruptive transformation. AI is significantly improving diagnostic accuracy and treatment efficiency while profoundly redefining healthcare professionals’ roles and patient experiences. A comprehensive understanding of the core technologies and clinical applications behind this transformation is essential for grasping the future trends and strategic directions of smart healthcare.
Headline
Knowledge
Principle and Applications of Laser Cutting Machines
As the global manufacturing industry advances toward higher precision and efficiency, laser cutting technology has become a key enabler of industrial upgrading. Compared with traditional shearing, stamping, and mechanical cutting, laser cutting offers non-contact processing, higher accuracy, and greater flexibility. It significantly improves productivity while reducing secondary finishing. Today, it is widely adopted in metalworking and increasingly applied in electronics, aerospace, medical, and architectural design industries.
Headline
Knowledge
Why Are High-Quality Cutting Fluids Critical for Machining Quality?
In CNC and metalworking, cutting fluid is no longer just a coolant—it plays a critical role by providing lubrication, chip removal, and corrosion protection. With the right formulation and concentration, it can reduce cutting heat, minimize friction, extend tool life, and maintain workpiece accuracy. High-pressure cooling further enhances efficiency in deep-hole and high-speed machining. The pairing of tool material with the proper cutting fluid is equally crucial; correct selection and maintenance ensure process stability, prolong equipment life, and improve the overall work environment. Cutting fluid has become an indispensable investment in modern precision manufacturing.
Headline
Knowledge
Introduction to Emerging Printing Technologies: Opening New Horizons for the Future of Printing
With rapid technological progress and increasingly diverse market demands, traditional printing techniques are no longer sufficient to meet modern industry’s requirements for precision, efficiency, and sustainability. As a result, emerging technologies such as UV printing, 3D printing, and Nanoimprint Lithography (NIL) have risen to prominence, offering solutions with higher precision, broader applications, and lower production costs. These innovations have already demonstrated value across packaging, advertising, healthcare, semiconductors, and construction. In the following sections, we will explore their technical features and real-world applications, highlighting the advantages and future potential of these cutting-edge printing technologies.
Headline
Knowledge
The Core Standard for Life-Critical Systems: A Complete Guide to IPC Classification
In high-risk fields such as medical, aerospace, and automotive, IPC classifications determine PCB reliability and safety. Class 3 represents the highest standard, requiring zero tolerance for defects, complete via filling, adequate copper annular rings, and rigorous inspections to ensure operation under extreme conditions, while Class 2 suits long-term use in non-critical equipment with minor cosmetic flaws allowed. Class 3’s strict criteria cover component placement, soldering, plating thickness, and environmental testing—adding cost and production time, but far outweighing the risks of failure in life- or safety-critical systems. Thus, defining high-risk equipment as Class 3 during design is essential, making IPC classification a core safeguard rather than an option.
Headline
Knowledge
The Power of Color: How the Printing Industry Protects Brand Quality
In the printing industry, color has always been a core element influencing both quality and sensory experience. Whether in packaging, advertising, or publications, color accuracy directly affects consumer perception and trust in a brand. With the rise of digitalization and globalization, companies increasingly demand brand consistency, making color management more than just an aesthetic concern—it is a safeguard for printing quality and brand value. This article explores the importance of color management, the application of ICC color calibration, and Pantone’s role in brand identity, providing a comprehensive overview of the core knowledge and practical value of color management in printing.
Headline
Knowledge
Is Your Paper Box Truly Recyclable? The Secrets of Composite Packaging
Imagine a typical morning, a warm drink in your hands, held in what looks like an eco-friendly paper cup. You think to yourself, "At least it's not plastic. It must be better for the environment." But have you ever wondered how that paper container holds a hot liquid without leaking? Can it really be recycled with ease? The truth is, there are hidden secrets about packaging materials you may not know.
Headline
Knowledge
How CNC Technology Ensures the Invisible Safety of Flight
The aerospace industry demands extremely high standards for component precision, lightweight design, and durability, and CNC (Computer Numerical Control) technology is a key enabler to meet these requirements. It is widely used in the production of critical parts such as turbine blades, airframe structures, and landing gear. With the global aerospace market expected to grow from USD 900 billion in 2023 to USD 1.2 trillion by 2030 (CAGR ~4.2%), CNC technology, with its micron-level precision and automation capabilities, not only helps improve aircraft fuel efficiency by around 10% but also ensures all components comply with the stringent AS9100D certification standards, making flight safer and more reliable.
Headline
Knowledge
Why Are Smartphones Getting Thinner Yet More Drop-Resistant?
Have you ever wondered why smartphones are becoming increasingly thinner? Driven by user convenience and portability, devices are shrinking while still retaining the functionality of previous generations, or even upgrading it, all while becoming lighter and slimmer. The key behind this lies in CNC (Computer Numerical Control) machine technology, which plays a central role in consumer electronics manufacturing. The consumer electronics industry encompasses smartphones, laptops, wearable devices (such as smartwatches), and various household appliances. These products demand extremely high standards for aesthetic design, structural precision, and functional performance. CNC technology is primarily applied in precision component machining, casing production, thermal management components, and customized designs.
Headline
Knowledge
When Car Windows Meet Technology: Beyond Isolation—Protection, Intelligence, and Electrification
Traditionally, a car window’s main function is to shield occupants from wind and rain. Today, however, modern automotive windows have evolved to incorporate multiple convenience and safety features. High-end vehicles often feature acoustic glass, which uses multi-layer structures with sound-dampening films to effectively block wind and road noise, allowing passengers to enjoy a quiet cabin even at high speeds. Meanwhile, tempered glass undergoes specialized manufacturing processes to ensure that, upon impact, it shatters into small, uniform pieces, reducing the risk of injury and complying with the latest safety regulations. This integration of precision engineering relies heavily on CNC (Computer Numerical Control) machinery. From maintaining uniform glass thickness and precise curvature to ensuring perfect adhesion between layers, even the slightest deviation can compromise noise insulation, thermal performance, and safety. Automakers therefore demand exceptionally high-quality standards from window manufacturers, as these components directly impact brand image and, more importantly, driver and passenger safety.
Headline
Knowledge
Soft PE/PP Waste Recycling Technology in the Circular Plastic Economy
Soft polyethylene (PE) and polypropylene (PP) waste are widely used in modern plastic industries, including packaging films, agricultural coverings, garbage bags, and logistics materials. Due to their high usage volume and recycling challenges, the effective recovery and processing of these materials have become a critical aspect of sustainable plastic management.
Headline
Knowledge
Machine Tool Lubrication and Cooling Systems: Components and Technologies
Machine tools are the cornerstone of modern manufacturing, enabling precise cutting, forming, and machining of metals and other materials. During operation, these machines generate significant friction and cutting heat, which, without proper management, can lead to tool wear, workpiece deformation, and reduced machining accuracy. Lubrication and cooling systems are essential for mitigating these issues, with lubrication reducing friction and wear, and cooling dissipating heat to maintain thermal stability. Together, these systems enhance machining efficiency, extend equipment lifespan, and improve surface quality. Research indicates that effective lubrication and cooling can boost machining performance by up to 30%. This article explores the critical components—lubrication pumps, pipes, coolant pumps, and filters—while highlighting advanced techniques and future trends.
Agree