The Pursuit of Low-Error and High-Precision Machine Precision
Knowledge

The Pursuit of Low-Error and High-Precision Machine Precision

To maintain the accuracy of finished products in the manufacturing industry, rapid detection and adjustment of machine tool performance is essential.
Published: Jan 21, 2022
The Pursuit of Low-Error and High-Precision Machine Precision
Definition of precision:

Generally speaking, accuracy refers to the ability of the machine tool to position the tool's nose point to the programmed target point. However, there are many ways to measure this positioning capability, and more importantly, different countries have different regulations.

  • Japanese machine tool manufacturers: When calibrating "accuracy", JISB6201 JISB6336 or JISB6338 standards are usually used. JISB6201 is generally used for general-purpose machine tools and ordinary CNC machine tools, JISB6336 is generally used for machining centers, and JISB6338 is generally used for vertical machining centers.
  • European machine tool manufacturers: Especially German manufacturers, generally adopt the VDI/DGQ3441 standard.
  •  American machine tool manufacturers: Usually use the NMTBA (National Machine Tool Builder's Assn) standard.

Error sources and precision challenges of machine tools:

The final accuracy of a machine is shown by the accumulation of all possible errors.

Nowadays, the precision machinery industry has higher and higher requirements for the accuracy of finished products. In intelligent machinery and manufacturing research technology, predicting processing quality through machine conditions is an important development topic. However, regardless of the type, specification, workload, and working accuracy of the machine tool, even for the most excellent CNC machine tool, the positioning accuracy will gradually decrease over time, resulting in errors. Therefore, to ensure consistent quality of components, reduce material waste, and achieve higher production efficiency, rapid inspection and adjustment of CNC machine tool performance is necessary.

The sources of error in tool machining performance are:

  1. Error of mechanical structure:
    The movement of the structure under its weight and load will cause the material to deform to different degrees, resulting in errors; the size of the structural error can be known by the finite element method analysis during design.
  2. Error of transmission system:
    The error of the fitting clearance between the screw, the line rail, and the slider, as well as the C1 level screw pitch should be within 5μm, and the highest level of the line rail (UP level) should have an error of less than 2μm between its two parallel surfaces. However, for high-precision machinery, the whole machine design and assembly needs to find a way to eliminate these total errors and to achieve the final high-precision requirements within ±3μm.
  3. Error of feedback and control:
    The controller commands the output to drive the motor and uses the optical scale to receive feedback. The best existing optical scale guarantees that the error can be maintained within 3μm, but this error is determined by the accuracy of the optical scale. As long as there is no problem with the optical scale assembly, the error is fixed and can be eliminated by the error compensation of the controller.
  4. Assembly error:
    The straightness, perpendicularity, parallelism, flatness of the machine, and the total error of each part and moving component are generally maintained within 5μm, which is a good error range.
  5. Error of temperature:
    Every time the temperature rises by 1°C, it will affect the amount of deformation of iron by 11.7μm /m. During the processing, local thermal deformation occurs due to the conversion of energy, resulting in thermal deformation of the tool or workpiece, requiring compensation by the machine tool. Even with the thermal compensation function, it is only a large-scale compensation, and cannot be used for small-area compensation. The best method for high-precision machining is to control the temperature rise of the machining so that the change is less than 0.5 °C so that the accuracy can be maintained.
  6. Deformation of materials:
    After the material is cast, there will be extensive internal deformation, and if the material is not tempered its deformation can be large. Material conditioning is required.
  7. Fixture and human operation error:
    Whether the fixture is symmetrical during processing, whether the clamping force is uniform, and whether there is vibration in the environment or other interference factors will affect the processing accuracy.
  8. Other errors (such as measurement or environmental factors):
     In the design of the whole machine, it is necessary to consider that the total median error value should be offset by differences of positive and negative errors. Errors can be reduced by compensation, thus improving the overall accuracy of the machine. The real difficulty is that these errors vary, that is, the distribution range of their standard deviations is too large to be controlled. With dozens of error sources, to maintain a total error variation of ±3μm, the variation of each error needs to be controlled within 1μm.  Maintaining the overall machine accuracy by controlling these many error sources is the difficult challenge.

Therefore, Taiwan's machine tool industry must continually improve as a whole. To beat competition, machine production factories as well as component and machining suppliers and partners must work together to improve manufacturing accuracy.

Published: Jan 21, 2022 Source :maonline

Further reading

You might also be interested in ...

Headline
Knowledge
Automation Definition and 5 Automation Values You Must Know
The emergence of automation has a great impact on people in various industries, because there are many highly repetitive labor jobs in factories, and the production capacity may vary due to differences in operators. With the introduction of Industry 4.0, Through the combination and application of various technologies, the automation of the production line can be controlled by machines from raw materials, assembly to distribution and packaging. People only need to set and check, which is a very important change for the factory. This article will share the definition of automation and the value it brings.
Headline
Knowledge
What is a Permanent Magnet?
Permanent magnets can be natural products, also known as lodestones, or artificially made. A material with a wide hysteresis loop, high coercivity, and high remanence can maintain a constant magnetism once magnetized. Also known as permanent magnetic material, hard magnetic material.
Headline
Knowledge
What is Direct Energy Deposition (DED) Metal Lamination Fabrication Printing Machine and Processing Technology?
Direct Energy Deposition (DED), also known as metal laser cladding, is one of the methods used to fabricate metal workpieces by additive manufacturing technology.
Headline
Knowledge
What are Measurements and Measuring Instruments? Understand the basic concepts of measurement
Engaging in quantitative observation cannot rely solely on human senses, such as vision, hearing, touch, etc., and often requires tools, that is, measuring instruments. Measurement refers to the numerical representation of the size of a manufactured object based on a certain standard (unit).
Headline
Knowledge
What Is A Diamond Tool?
Among the superhard materials, diamond is a kind of superhard material, and the other is cubic boron nitride. After a series of processing and processing procedures, the two superhard materials can be made into various tools and directly used to make various functional devices, which are collectively referred to as superhard material products. Here we focus on one of them - diamond grinding tool.
Headline
Knowledge
Application and Advantages of Planetary Reducer
Planetary reducer has been in existence for more than 30 years. During this long period of time, planetary reducer only appeared in high-end equipment in Europe and America. But, now automation is the trend, and planetary reducer has been widely used in machine tools, semiconductors, and packaging industries, medical food industry, aerospace, and other fields in recent years. High, medium and low power servo motors with planetary reducers have become standard. What are the applications and advantages of planetary reducers? This article will let you know more about planetary reducers.
Headline
Knowledge
What is MRO? Five Things You Have to Know!
The term MRO is an acronym that stands for maintenance, repair, and operations. The term is used to describe the set of operations and activities that are associated with the upkeep of a plant or facility which can include the physical maintenance of the structure or building, the systems that operate within the facility, and the equipment used to produce the plant or facility’s primary business output.
Headline
Knowledge
What Does BOM Management Mean? What Are the Purposes?
What does BOM management mean? What are the purposes? In manufacturing management information systems, BOM is often mentioned. BOM is the "Bill of Materials", also known as the product structure table. The Bill of Materials refers to the list of parts and components required for the product and its structure.
Headline
Knowledge
What Is a Mold? Indispensable Tools in Industrial Manufacturing
A mold is a production tool that can produce parts with certain shape and size requirements. In industrial production, various presses and special tools installed on the press are used to make metal or non-metallic materials into parts or products of the desired shape through pressure. Such special tools are collectively referred to as molds.
Headline
Knowledge
What are the Different Types of Screw Extruders and Their Functions?
What is a screw extruder? The extruder is one of the types of plastic machinery. It is the most common machinery in the modified plastics industry and is widely used in the polymer processing industry and other production and processing fields. Extruders can be divided into single-screw extruders and twin-screw extruders, and their processing has advantages and disadvantages.
Headline
Knowledge
Question About Screw Threads
Screws and bolts are common threaded fasteners. They are mechanical parts with internal or external threads. They are generally used as a mechanism for fastening to facilitate the combination of multiple components. Unlike welding, the function of the locking mechanism is easy to adjust, easy to disassemble. If a fastener has external threads and is not used with a nut, it is a screw (such as wood screws, self-tapping screws), and if it is used with a nut, it is a bolt (such as flat head bolts, non-slip bolts). Different threads have different performance applications.
Headline
Knowledge
How Much Do You Know About The Fastener?
When it comes to fasteners, everyone seems to know a little bit about it. After all, hardware such as screws and nuts are commonplace in life. Fasteners are widely used in many industries. The degree of standardization, serialization and generalization is extremely high.
Agree