The Pursuit of Low-Error and High-Precision Machine Precision
Knowledge

The Pursuit of Low-Error and High-Precision Machine Precision

To maintain the accuracy of finished products in the manufacturing industry, rapid detection and adjustment of machine tool performance is essential.
Published: Jan 21, 2022
The Pursuit of Low-Error and High-Precision Machine Precision
Definition of precision:

Generally speaking, accuracy refers to the ability of the machine tool to position the tool's nose point to the programmed target point. However, there are many ways to measure this positioning capability, and more importantly, different countries have different regulations.

  • Japanese machine tool manufacturers: When calibrating "accuracy", JISB6201 JISB6336 or JISB6338 standards are usually used. JISB6201 is generally used for general-purpose machine tools and ordinary CNC machine tools, JISB6336 is generally used for machining centers, and JISB6338 is generally used for vertical machining centers.
  • European machine tool manufacturers: Especially German manufacturers, generally adopt the VDI/DGQ3441 standard.
  •  American machine tool manufacturers: Usually use the NMTBA (National Machine Tool Builder's Assn) standard.

Error sources and precision challenges of machine tools:

The final accuracy of a machine is shown by the accumulation of all possible errors.

Nowadays, the precision machinery industry has higher and higher requirements for the accuracy of finished products. In intelligent machinery and manufacturing research technology, predicting processing quality through machine conditions is an important development topic. However, regardless of the type, specification, workload, and working accuracy of the machine tool, even for the most excellent CNC machine tool, the positioning accuracy will gradually decrease over time, resulting in errors. Therefore, to ensure consistent quality of components, reduce material waste, and achieve higher production efficiency, rapid inspection and adjustment of CNC machine tool performance is necessary.

The sources of error in tool machining performance are:

  1. Error of mechanical structure:
    The movement of the structure under its weight and load will cause the material to deform to different degrees, resulting in errors; the size of the structural error can be known by the finite element method analysis during design.
  2. Error of transmission system:
    The error of the fitting clearance between the screw, the line rail, and the slider, as well as the C1 level screw pitch should be within 5μm, and the highest level of the line rail (UP level) should have an error of less than 2μm between its two parallel surfaces. However, for high-precision machinery, the whole machine design and assembly needs to find a way to eliminate these total errors and to achieve the final high-precision requirements within ±3μm.
  3. Error of feedback and control:
    The controller commands the output to drive the motor and uses the optical scale to receive feedback. The best existing optical scale guarantees that the error can be maintained within 3μm, but this error is determined by the accuracy of the optical scale. As long as there is no problem with the optical scale assembly, the error is fixed and can be eliminated by the error compensation of the controller.
  4. Assembly error:
    The straightness, perpendicularity, parallelism, flatness of the machine, and the total error of each part and moving component are generally maintained within 5μm, which is a good error range.
  5. Error of temperature:
    Every time the temperature rises by 1°C, it will affect the amount of deformation of iron by 11.7μm /m. During the processing, local thermal deformation occurs due to the conversion of energy, resulting in thermal deformation of the tool or workpiece, requiring compensation by the machine tool. Even with the thermal compensation function, it is only a large-scale compensation, and cannot be used for small-area compensation. The best method for high-precision machining is to control the temperature rise of the machining so that the change is less than 0.5 °C so that the accuracy can be maintained.
  6. Deformation of materials:
    After the material is cast, there will be extensive internal deformation, and if the material is not tempered its deformation can be large. Material conditioning is required.
  7. Fixture and human operation error:
    Whether the fixture is symmetrical during processing, whether the clamping force is uniform, and whether there is vibration in the environment or other interference factors will affect the processing accuracy.
  8. Other errors (such as measurement or environmental factors):
     In the design of the whole machine, it is necessary to consider that the total median error value should be offset by differences of positive and negative errors. Errors can be reduced by compensation, thus improving the overall accuracy of the machine. The real difficulty is that these errors vary, that is, the distribution range of their standard deviations is too large to be controlled. With dozens of error sources, to maintain a total error variation of ±3μm, the variation of each error needs to be controlled within 1μm.  Maintaining the overall machine accuracy by controlling these many error sources is the difficult challenge.

Therefore, Taiwan's machine tool industry must continually improve as a whole. To beat competition, machine production factories as well as component and machining suppliers and partners must work together to improve manufacturing accuracy.

Published by Jan 21, 2022 Source :maonline

Further reading

You might also be interested in ...

Headline
Knowledge
Essential for Precision Machining: A Complete Guide to Tungsten Carbide Center Drills
In modern manufacturing, precision is the core standard by which product quality and performance are measured. From aerospace components to medical devices, even a minor deviation can lead to serious consequences. When it comes to precision drilling, a critical challenge is ensuring that a drill bit can be accurately positioned at the start of a cut while maintaining stability during high-intensity operations. The tungsten carbide center drill is the professional tool engineered specifically to solve this problem.
Headline
Knowledge
From Cavitation Effect to Industrial Applications: The Secrets of Ultrasonic Cleaning
When your glasses, tableware, or electronic components are stained with stubborn dirt, what can you do? Traditional methods often require vigorous scrubbing or even harsh chemical solvents, which are not environmentally friendly and may scratch the item. At this moment, ultrasonic cleaning acts like an “invisible little helper”, reaching deep into grooves and gaps to gently yet effectively remove contaminants.
Headline
Knowledge
The “Spark Magician” of Metalworking
Electrical Discharge Machining (EDM) is a non-traditional machining process that removes metal through electrical sparks. Unlike conventional methods, it is not limited by material hardness and can precisely create deep cavities, micro-holes, and complex structures in hardened steel, tungsten carbide, or superalloys. The three main types of EDM include wire cutting, die-sinking, and hole drilling, which are widely applied in mold making, aerospace, automotive, and medical industries. Although EDM has a slower processing speed, works only with conductive materials, and requires consideration of electrode wear and surface treatment, its advantages in high precision, zero cutting force, and superior surface finish make it an indispensable technology in precision manufacturing. Moreover, it continues to evolve in line with the trend toward smart manufacturing.
Headline
Knowledge
Press Brake vs Shearing Machine: Functional and Technical Comparison of Industrial Processing Equipment
Press Brake and Shearing Machine are two essential types of equipment in the field of machine tools, widely used in the processing of metal, wood, and other materials. They play critical roles in manufacturing, enabling efficient and precise material forming and cutting. This article introduces the definitions, functions, technical features, and applications of folding and cutting machines, offering neutral and practical knowledge sharing.
Headline
Knowledge
Master Chuck Types & Selection: The Essential Guide for Machinists
In the world of precision manufacturing, every minute detail can determine the quality of the final product. The chuck is a critical yet often overlooked component—it's not just a tool for holding a workpiece, but the very heart of ensuring machining accuracy, efficiency, and safety. This article will take you on a deep dive into the diverse universe of chucks, covering their operating principles, design philosophies, common types, and how to select the right jaws and chucks for different needs. Whether you're new to the industry or a seasoned engineer, this guide will unlock the intricate secrets of chucks, helping you master every detail on your path to manufacturing success.
Headline
Knowledge
An Overview of Electrical Discharge Machining (EDM)
Electrical Discharge Machining (EDM) is a non-traditional manufacturing process that utilizes electrical sparks to remove material from a workpiece. Unlike conventional machining methods such as milling or turning, which rely on physical contact between a tool and the material, EDM operates without direct contact, making it ideal for processing hard or brittle materials that are difficult to machine otherwise. The process involves generating a series of rapid electrical discharges between an electrode and the workpiece, submerged in a dielectric fluid, which erodes the material through thermal energy. This technique has revolutionized precision manufacturing by enabling the creation of complex geometries with high accuracy.
Headline
Knowledge
Applications of Machine Tools in the Aerospace Industry
The aerospace industry is a highly specialized and technology-driven sector, encompassing the design, manufacturing, and maintenance of aircraft, spacecraft, satellites, and related equipment. Machine tools play a critical role in this field, enabling the precision machining of complex metal and composite material components. These tools enhance production efficiency while ensuring the accuracy and reliability required to meet the stringent safety and performance standards of aerospace. This document outlines the key applications, technologies, benefits, and future trends of machine tools in the aerospace industry.
Headline
Knowledge
Smart Healthcare Uncovered:How AI Is Transforming Clinical Practice?
With the rapid rise of artificial intelligence (AI), the healthcare industry is undergoing a disruptive transformation. AI is significantly improving diagnostic accuracy and treatment efficiency while profoundly redefining healthcare professionals’ roles and patient experiences. A comprehensive understanding of the core technologies and clinical applications behind this transformation is essential for grasping the future trends and strategic directions of smart healthcare.
Headline
Knowledge
Principle and Applications of Laser Cutting Machines
As the global manufacturing industry advances toward higher precision and efficiency, laser cutting technology has become a key enabler of industrial upgrading. Compared with traditional shearing, stamping, and mechanical cutting, laser cutting offers non-contact processing, higher accuracy, and greater flexibility. It significantly improves productivity while reducing secondary finishing. Today, it is widely adopted in metalworking and increasingly applied in electronics, aerospace, medical, and architectural design industries.
Headline
Knowledge
Why Are High-Quality Cutting Fluids Critical for Machining Quality?
In CNC and metalworking, cutting fluid is no longer just a coolant—it plays a critical role by providing lubrication, chip removal, and corrosion protection. With the right formulation and concentration, it can reduce cutting heat, minimize friction, extend tool life, and maintain workpiece accuracy. High-pressure cooling further enhances efficiency in deep-hole and high-speed machining. The pairing of tool material with the proper cutting fluid is equally crucial; correct selection and maintenance ensure process stability, prolong equipment life, and improve the overall work environment. Cutting fluid has become an indispensable investment in modern precision manufacturing.
Headline
Knowledge
Introduction to Emerging Printing Technologies: Opening New Horizons for the Future of Printing
With rapid technological progress and increasingly diverse market demands, traditional printing techniques are no longer sufficient to meet modern industry’s requirements for precision, efficiency, and sustainability. As a result, emerging technologies such as UV printing, 3D printing, and Nanoimprint Lithography (NIL) have risen to prominence, offering solutions with higher precision, broader applications, and lower production costs. These innovations have already demonstrated value across packaging, advertising, healthcare, semiconductors, and construction. In the following sections, we will explore their technical features and real-world applications, highlighting the advantages and future potential of these cutting-edge printing technologies.
Headline
Knowledge
The Core Standard for Life-Critical Systems: A Complete Guide to IPC Classification
In high-risk fields such as medical, aerospace, and automotive, IPC classifications determine PCB reliability and safety. Class 3 represents the highest standard, requiring zero tolerance for defects, complete via filling, adequate copper annular rings, and rigorous inspections to ensure operation under extreme conditions, while Class 2 suits long-term use in non-critical equipment with minor cosmetic flaws allowed. Class 3’s strict criteria cover component placement, soldering, plating thickness, and environmental testing—adding cost and production time, but far outweighing the risks of failure in life- or safety-critical systems. Thus, defining high-risk equipment as Class 3 during design is essential, making IPC classification a core safeguard rather than an option.
Agree