Material Development of Aerospace Parts, Continuous Lightweight
Market News

Material Development of Aerospace Parts, Continuous Lightweight

The aviation industry has always been equipped with strict quality system certification and highly complex integration technologies. All countries in the world regard the aviation industry as an indicator of national industrial technical capabilities.
Published: Nov 28, 2022
Material Development of Aerospace Parts, Continuous Lightweight

Background of Aerospace Parts Industry:

The aviation industry has always been equipped with strict quality system certification and highly complex integration technologies. All countries in the world regard the aviation industry as an indicator of national industrial technical capabilities. In the next 20 years, the average annual growth rate of the air transport industry will be 4.7%, which will generate business opportunities for the aviation manufacturing industry. Therefore, it is estimated that the global demand for new passenger aircraft will be about 42,000 in the next two decades, with a market value of US$6.3 trillion, of which the demand for new aircraft in the Asia-Pacific region is the strongest. Under the promotion and guidance of relevant units of the Ministry of Economic Affairs, Taiwan's aviation industry has established a supply chain system for related civil aviation products, and established partnerships with world-renowned aerospace manufacturers. The government's plans to promote the national production of state-owned aircraft, self-made advanced trainers, and follow-up military aircraft have made the aviation industry a bright spot for development.

In terms of the cost of aircraft parts, the engine accounts for about 27%, which is only lower than 38% of the fuselage. The countries in the world that can fully independently develop advanced aero-engines are limited to the United States, Britain, France, Russia, and other countries. According to the driving principle, aero-engines include turbofans, turboprops, and turboshafts, which are respectively used in jets, propellers, and helicopters. Turbofan engines have the characteristics of high efficiency, low noise, small size, and high-reliability design. In terms of the cost of aircraft components, the engine accounts for about 27%, which is only 38% lower than the airframe. The engine of the Boeing 757 is mainly made of titanium and nickel. Without these materials, jet engines would not be able to operate in the required conditions. However, titanium alloys, nickel-based alloys, and other materials have good mechanical properties at high temperatures, so the materials have a large cutting force, slow heat dissipation, high tool temperature, and material work hardening during cutting. Therefore, it is difficult to carry out cutting efficiently, especially for superalloy impellers with complex torsion surfaces and thin plate features, the technical difficulty is deeper, so the relevant aerospace industry has an urgent demand for its cutting process technology.

The Material Development of Aviation Parts:

To make the aircraft lightweight, "Duralumin" is specially used in the body material. Duralumin is made of a mixture of aluminum, copper, magnesium, manganese, and other substances. Its characteristics are that its weight is lighter than iron, and its properties are strong and strong. It is an alloy that is very suitable as an aircraft material. As for the interior of the engine, which generates high temperature and pressure, magnesium alloys, titanium alloys, nickel alloys, and other materials are also used.

With the continuous advancement of aerospace technology, new manufacturing materials have begun to appear, and composite materials are one of them. This composite material is a combination of fiber material and plasticized products and is used to replace the old aluminum alloy material. Because of their excellent elasticity and durability, and lighter weight, composite materials are mostly used in aircraft landing gear, as well as in the flaps, and horizontal and vertical tail parts of aircraft wings.

The aviation industry has been using composite materials since the 1970s. Since 1985, it has been used to make tails, such as the Airbus A310 wide-body airliner. However, it was not until the past decade that composite materials made breakthroughs and were widely used in the Boeing 787 Dreamliner and Airbus A350. Almost half of the fuselage of the two aircraft is made of carbon fiber plastic and other composite materials. Lighter carbon fiber replaces most metal parts, saving fuel bills. Metals will have problems such as corrosion and fatigue, and they will need to be replaced after a certain time. Composite materials will not have such problems, which can prolong the life of the aircraft.

Material Introduction of Various Aviation Parts:

Taking the turbofan engine of Boeing 757 as an example, its materials include non-ferrous metals and alloys: titanium, nickel, chromium, cobalt, aluminum, niobium, and tantalum. Without these materials, jet engines would not be able to operate in the required conditions and kinetic energy.

Titanium alloys (a-type, a + b-type, b-type) have excellent strength-to-density ratio and corrosion resistance, but also because of their lightweight, corrosion resistance, high-temperature resistance, high fatigue strength, low thermal expansion coefficient, non-magnetic, and non-toxic metal materials, and can produce multiple colors by anodizing, so it is widely used in the aerospace industry and daily life. However, due to the physical properties of titanium alloy itself, such as high strength, difficulty to cut, easy to generate cutting chatter, low thermal conductivity, and small thermal expansion coefficient, resulting in high cutting temperature and high temperature during processing, the chemically reactive titanium The alloy reacts with the tool material chemically, resulting in tool wear and tear, which affects tool life.

In addition to the application of titanium alloys in the aerospace industry, vehicles, and sports equipment industries, emerging medical industries have developed rapidly in recent years, such as the processing and production of medical implants, bone nails, bone plates, and the production of artificial tooth roots. The materials are mainly SUS316LVM and Ti-6Al-4V ELI and Pure Ti. The main reason is that the material has a good affinity with the human body and is not easy to produce chemical changes. In particular, the current development trend of titanium alloys is increasing day by day. Because this material is defined as a difficult-to-cut material, there is an urgent need for its cutting parameters. It is expected to find the best condition factors and levels that meet the cutting process. When milling titanium and titanium alloys, climb milling should be used. It is advisable to use a milling cutter with a small diameter and a large number of teeth, which can reduce vibration. Usually, the clearance angle of the milling cutter teeth for milling titanium is 30-50% larger than that of ordinary milling cutters. For milling, the correct selection of lubricating coolant is very important. Generally, it is suitable to use lubricating coolant that is soluble in water, and it is better to add it by spraying.

Superalloys can be divided into four types: iron-based, iron-nickel-based, nickel-based, and cobalt-based. Among them, nickel-based superalloys contain more than 50% nickel, and the working temperature can reach 1000 °C. It can obtain ideal strength and thermal resistance, so it is widely used in aero-engines. Iron-based superalloys are based on iron and are suitable for parts with lower operating temperatures. The nickel content of iron-nickel-based superalloys is 30%-40%. These alloys have higher tensile strength than nickel-based and cobalt-based alloys and are suitable for slightly higher working temperature environments than iron-based alloys. Cobalt-based superalloys use cobalt as the base, accounting for about 45%-60%, and add Cr, Ni, C, W, Mo, Fe, etc. to improve the heat resistance.

Inconel 718 nickel-based superalloy still has good mechanical strength, fatigue limit, and high-temperature corrosion resistance at a high temperature of 700 °C, so it is widely used in high-temperature, high-load, and corrosion resistance environments. However, due to the small thermal conductivity and specific heat value of Inconel 718 nickel-based superalloy, and good mechanical properties at high temperatures, the material has a large cutting force and slow heat dissipation during cutting, resulting in high tool temperature. The Build-up edge phenomenon of chips and tools easily occurs when cutting nickel-based superalloys. In addition, the Inconel 718 nickel-based superalloy has a base of the vostian iron type, in which the content of Nb is higher than that of other alloys, and it is easy to precipitate hard Ni3Nb, resulting in work hardening during cutting. Makes the tool wear out quickly. The application of hard-to-cut materials for aerospace parts takes the impeller as an example. It is one of the important and novel components of modern aero-engines. It was first applied to the small engine of helicopters. In the 1980s, it was used in military aircraft engines and was rapidly adopted by commercial turbofan and turboprop aircraft.

Advantage:
  • Lightweight: Due to the use of fewer blades, the weight can generally be reduced by 20-30%.
  • The blade root is integrated with the disc.
  • Higher aerodynamic efficiency.
  • Improve the service life, and will not affect the fatigue strength of the joint due to corrosion. However, BLISK has its shortcomings, mainly in its manufacture and repair, complex torsion surfaces and difficult-to-cut materials are difficult to process and expensive. And to ensure its reliability, strict quality control is a necessary process.

Generally, the structure of the compressor impeller of aircraft engines and industrial gas turbines is that the independent blades are positioned on the disc in a welded or locked manner. The BLISK is also known as integrated bladed rotors (IBR), which means that the blade root geometry and positioning grooves are no longer required, and the disc rotor and blades are designed in one piece. The development status of integrated impeller compressor and BLISK manufacturing technology in today's engine structure, as well as the application of technology in BLISK manufacturing in the future and meeting the challenges of function, quality, and cost. The manufacturing feasibility of the bi-material BLISK is being developed for use in highly stressed turbine sections. In addition, in the design of BLISK, it is necessary to take into account the technology and method of future repair.

Published by Nov 28, 2022 Source :tiri

Further reading

You might also be interested in ...

Headline
Market News
Emerging Technologies and Market-Driven Integration of the Machine Tool Industry Chain
In the fast-evolving global manufacturing landscape, electric vehicles (EVs), semiconductors, and aerospace industries are emerging as key drivers of technological upgrades. These sectors share a common requirement for complex and high-precision components, which conventional machining methods alone can no longer fully address. This demand is reshaping the machine tool industry chain, from upstream components to midstream machine manufacturing and downstream applications, all showing strong trends toward integration and intelligent development.
Headline
Market News
From Cold Chain to Retail: How Smart Labels Are Reshaping Supply Chains
As the IoT rapidly advances, traditional printed labels are evolving into intelligent “smart tags.” No longer merely adhesive printings, these tags embed chips and sensor modules to enable real-time product tracking, authentication, and even consumer interaction. This technological shift is reshaping operations across logistics, retail, healthcare, and manufacturing.
Headline
Market News
Accelerated Medical Transformation: Challenges Solved? Unveiling the New Market Blueprint for 2025
In 2025, the global healthcare industry is entering a critical period of rapid technological innovation and profound market transformation. While facing multiple challenges such as labor shortages, rising costs, and policy uncertainties, the industry is also embracing growth opportunities driven by cutting-edge technologies like artificial intelligence, regenerative medicine, and bioprinting. With continued active investment in health tech, the medical market is demonstrating strong resilience, painting a new blueprint for the future.
Headline
Market News
Can CNC Technology Make Food Processing Faster and Safer?
The core requirements for food processing equipment lie in safety, efficiency, and durability. CNC (Computer Numerical Control) technology, with its precision and automation advantages, has become a key enabler in the manufacturing of slicers, packaging machines, mixers, and other equipment. With the global food processing equipment market projected to grow from USD 55 billion in 2023 to USD 75 billion by 2030 (a CAGR of approximately 4.5%), CNC is driving the industry toward greater intelligence and efficiency.
Headline
Market News
Do You Know the Manufacturing Secrets Behind Sports Equipment?
In the sports equipment industry, CNC (Computer Numerical Control) machines are the key driver for high product performance, extended durability, and enhanced market competitiveness. From golf clubs to bicycle frames, CNC machining combines high precision and flexibility, not only meeting the strict quality demands of professional athletes but also providing efficient and customizable manufacturing solutions for buyers.
Headline
Market News
Supply Chain Restructuring under the US–China Tech War: How Machine Tools Empower Autonomous Electronics Manufacturing
Globalized supply chains were originally driven by an “efficiency-first” mindset. However, in the context of the US–China tech competition, geopolitical tensions, export controls, and technology embargoes have placed multiple pressures on the electronics industry, including chip restrictions, equipment limitations, and trade barriers. Traditional production models, which rely on concentration in a single region, have become increasingly unsustainable. These developments have prompted companies to recognize that, beyond cost reduction, ensuring supply chain stability and control over autonomy is now far more critical.
Headline
Market News
Nurturing Talent in Taiwan's Manufacturing Sector: The Government's Strategy for a Competitive Future
The global high-tech sector is at a critical crossroads, facing the dual challenges of rapid technological iteration and a severe talent shortage. In Taiwan, a world-renowned hub for precision manufacturing, the situation is no different. As the end-user market demands higher precision processing and the wave of smart manufacturing and digital transformation sweeps in, the government has long recognized that nurturing talent is paramount to maintaining the nation's industrial competitiveness.
Headline
Market News
2025 Continued Innovation in Healthcare Driving Market Growth
In 2025, the global healthcare industry is experiencing a profound revolution, fueled by the deep integration of digital technology and AI. As medical service models rapidly evolve, institutions are adopting innovations to enhance diagnostic accuracy, treatment efficiency, and patient experience while also controlling costs. This article analyzes the key drivers, applications, and future challenges in the 2025 healthcare market, offering a comprehensive insight into industry trends and growth potential.
Headline
Market News
Elevating Drone Manufacturing: The Machining Advantages of CNC Machines
With the rapid expansion of the unmanned aerial vehicle (UAV) industry, CNC (Computer Numerical Control) machines play an indispensable role in precision manufacturing. According to market research firm Grand View Research, the global drone market is expected to grow from approximately USD 40 billion in 2023 to USD 90 billion by 2030 a remarkable trajectory. CNC machining’s high-precision capabilities, from structural components and electronic parts to critical modules, can directly impact drone performance while linking the entire supply chain from raw materials to global trade.
Headline
Market News
U.S.–China Trade War and the Russia–Ukraine Conflict: Challenges and Adjustments in the Textile Raw Material Supply Chain
The textile industry has always been one of the most globalized sectors, with raw materials often crossing multiple borders before reaching the apparel market. However, in recent years, growing geopolitical uncertainties—most notably the U.S.–China trade war and the Russia–Ukraine conflict—have created unprecedented challenges for textile supply chains. Trade frictions between the U.S. and China have restricted exports of cotton and fabrics, forcing brands to reassess sourcing strategies. Meanwhile, the Russia–Ukraine war has driven up energy and chemical raw material prices, indirectly raising costs for synthetic fibers such as polyester and nylon. Together, these factors are pushing the global textile industry to rethink supply chain resilience and its future trajectory.
Headline
Market News
From Policy to Production: How Smart Machine Monitoring is Reshaping Global Factories
In the global manufacturing industry’s shift toward Industry 4.0, smart upgrades are no longer optional—they’re essential for staying competitive. At the core of this transformation is the conversion of traditional factories into data-driven, smart ecosystems. This complex undertaking isn’t something companies can tackle alone. A series of policies and international collaborations, from governments’ high-level strategies to industry alliances’ communication standards, are paving the way for smart manufacturing. This allows technologies like remote monitoring and predictive maintenance to move from blueprints to reality more quickly, fundamentally changing how factories operate worldwide.
Headline
Market News
Aerospace Supply Chains Move to India: Growth and Opportunities in a Rising Market
Amid constrained Western supply chains and rising geopolitical risks, aerospace giants like Airbus and Rolls-Royce are increasingly sourcing components from India, driving the local industry from basic manufacturing into design, engineering, and systems integration. Backed by low-cost labor, supportive policies, and improving infrastructure, India is rapidly emerging as a global aerospace hotspot, aiming to capture 10% of the market in the next decade. Simultaneously, Taiwanese firms are responding to the “China+1” strategy by boosting investments in India and planning industrial parks in Telangana to diversify risk and seize new opportunities. By combining India’s cost and workforce advantages with Taiwan’s precision manufacturing and certification expertise, the two sides are poised to build a cost-competitive, high-value aerospace supply ecosystem—creating a win-win scenario in the global industry.
Agree