Six New Technology Trends in The Aerospace Industry
Trend

Six New Technology Trends in The Aerospace Industry

The development of the aerospace high-tech industry is closely related to military applications, but more importantly, the tremendous progress humans have made in this industry has had a significant and far-reaching impact on many aspects of the economy and life, driving and changing the face of the world. In the 21st century, the role of aerospace activities will far exceed the field of science, and will have a wider impact on politics, economy, military and human social life, and will continue to create new scientific and technological achievements and huge economic benefits.
Published: Sep 01, 2022
Six New Technology Trends in The Aerospace Industry

According to Advanced Manufacturing, six new manufacturing technologies will help the aerospace industry to embrace a brighter future: advanced design technologies, digital assistants, augmented reality (AR) and virtual reality (VR), new manufacturing materials, collaborative robots, and advanced computing capabilities.

First, advanced design techniques can improve the design process by leveraging data and simulation, but so far, design has relied on personal experience, training, and intuition. Lockheed Martin pointed out that new design tools such as generative design (generative design), through artificial intelligence (AI) and real data, allow the aerospace industry to quickly produce affordable and lightweight parts.

Generative design software lets engineers or designers set goals and parameters, including budgets, materials, and manufacturing methods. The software then runs simulations to suggest optimal designs and continually refine the design based on new information or parameters.

The second is smarter digital assistants. Although the technology of digital assistants is still immature but promising, it can detect potential problems faster than humans. Although the technology is still in its infancy in the manufacturing industry, it is expected to provide advice and insights for manufacturing personnel in the future, but the relevant technology requires a considerable amount of investment, so that the industry is not able to move forward.

The third is that AR and VR transform factory personnel into superhumans. For example, workers wear exoskeleton robots that can lift heavy objects that they could not handle. VR technology has matured in the game industry and is currently trying to apply it to the industrial field.

The fourth is the introduction of new manufacturing materials. Integrated Computational Engineering of Materials (ICME) designs materials in the basic unit of atoms to improve thermal conductivity and electromagnetic energy conductivity, as well as reduce volume and weight. For example, Graphene was developed in 2004. , has been put into production, and other new materials are also in the research and development stage.

The fifth is collaborative robots. Although the robot industry is mature, most robots still work independently and keep a certain distance from humans. Robots can sense the presence of humans and allow people and machines to live in peace. Japanese robots have already served in the medical industry to meet the daily needs of the elderly.

The sixth is the huge increase in computing power, which can process the large amount of data collected by smart factories. Quantum computers are 3,600 times faster than supercomputers, but are still 8-10 years away from general commercialization and large-scale operations.

Biomorphic computing is more imitating the human brain. Although the conduction speed of human brain neurons is slow, they have a huge number, which is equivalent to super-large-scale parallel computing, thus making up for the lack of processing speed of a single neuron. IBM uses the TrueNorth chip to simulate bionic computing and recognition, and the ultimate goal is to break the existing traditional computer architecture.
Published by Sep 01, 2022 Source :DIGITIMES

Further reading

You might also be interested in ...

Headline
Trend
The Application of Materials Science in Medical Device Manufacturing
In the field of medical device manufacturing, materials science plays a central role, directly impacting the safety, durability, and clinical performance of equipment. With the rapid development of smart healthcare and precision medicine, the demands for material performance have become increasingly stringent, particularly in the areas of biocompatibility, antimicrobial properties, and lightweight design.
Headline
Trend
Globalization and Steel-and-Glass Structures: Has the Architectural Divide Between East and West Disappeared?
In the West, concrete is a symbol of strength and efficiency, yet in the hands of a Japanese master, it can become a vehicle for Zen philosophy. In Asia, bamboo is revered as a sustainable material, but in the West, it is being redeveloped into a high-tech, eco-friendly solution. This article will delve into why architects from the East and West, even when faced with the same materials, can create two completely different architectural identities. The root of this lies in a fundamental difference in philosophy: the Eastern focus on living in harmony with nature and the Western drive to challenge physical limits.
Headline
Trend
Sewing Challenges in the Era of Sustainability: Balancing Durability and Eco-Friendliness
In discussions on sustainable textiles, sewing threads may seem insignificant, yet they play a crucial role. The material and production process of threads not only affect the durability of garments but also have long-term environmental impacts. In particular, under the influence of “fast fashion,” low-quality threads often break or fade easily, leading to garments being quickly discarded. In contrast, durable threads made from sustainable sources help extend the life cycle of clothing, reduce waste, and embody the concept of “slow fashion.”
Headline
Trend
Smart Breathing Masks: From Pandemic Essential to Intelligent Healthcare
The evolution of healthcare is a continuous response to the needs of the times. Breathing masks, a medical consumable we once paid little attention to, are a concrete example of this transformative wave. They are shifting from being a cold, professional tool to a gentle companion infused with intelligence and human-centered care.
Headline
Trend
Addressing Packaging Challenges Across Industries: Key Strategies for Food, Chemical, and Pharmaceutical Sectors
Do different industries face the same challenges? While the products of the food, chemical, and pharmaceutical industries vary greatly, their packaging lines share a common set of core challenges: how to ensure quality and safety while balancing high efficiency and regulatory compliance. As a result, customized packaging solutions have become the mainstream. Packaging machines are no longer single-function devices for "capping and filling" but rather comprehensive systems designed to meet the specific regulations of each industry.
Headline
Trend
The AI Revolution in Healthcare: Redefining the Future of Medicine
The explosive rise of artificial intelligence (AI) is ushering in an unprecedented transformation within the healthcare industry. No longer just a data analysis tool, AI has evolved into a smart assistant capable of deep collaboration with human experts and even operating independently. From diagnostic assistance to personalized treatment plans, AI is making healthcare more efficient, precise, and accessible to every patient.
Headline
Trend
Waterless Printing & Smart Tech: The New Eco-Standard for Label Printing
As global expectations for environmental protection rise, both consumers and brands are placing greater emphasis on the environmental impact of a product’s entire lifecycle—from production to recycling. Labels and stickers, as common products in the printing industry, have traditionally relied on large amounts of water, solvents, and energy in their production processes, creating a significant environmental burden. Today, sustainable printing is no longer an optional add-on but a key strategy for building brand trust and enhancing market competitiveness. Brands with clear eco-friendly initiatives are more likely to gain favor from both policymakers and the market, positioning themselves at the forefront of the global sustainability trend.
Headline
Trend
Modern Scaffolding: A Guide to Revolutionizing Construction Safety & Efficiency
From the construction of the ancient pyramids of Egypt to the rise of modern skyscrapers, one crucial temporary structure has always played the role of an unsung hero: scaffolding. This support system not only provides a safe foothold for workers but has also continuously evolved from a simple framework into a highly efficient, precise, and intelligent engineering system.
Headline
Trend
The Connection Between Medical Device Manufacturing and Machine Tools
The medical industry is experiencing rapid growth, driven by an aging population, rising chronic diseases, and technological advancements. The demand for high-precision medical devices is increasing, requiring manufacturing processes that ensure safety, reliability, and performance. Machine tools play a critical role in meeting these stringent requirements, enabling the production of complex medical instruments with exceptional accuracy.
Headline
Trend
Smart Manufacturing in Printing: A New Era of Efficiency, Precision, and Sustainability
For over a century, the printing industry has been regarded as a relatively mature and stable sector. However, as market demand diversifies and the wave of digitalization accelerates, printing is undergoing a profound transformation. In the era of Industry 4.0, intelligence and automation have become the keywords of competitiveness. From AI (Artificial Intelligence) to IoT (Internet of Things), and the rise of post-press automation, these technologies are quietly reshaping every step of the printing process. Printing is no longer just about reproducing text and images; it is evolving into an era of “smart manufacturing” that is more efficient, precise, and environmentally friendly.
Headline
Trend
Industrial Applications of CNC in the Robotic Arm Industry
CNC technology is an automated system that precisely controls machinery through computer programs, widely applied across various manufacturing sectors. The robotic arm industry encompasses both industrial uses (such as assembly and welding) and service applications (such as latte art or maintenance). In Japan, for instance, people with disabilities can remotely operate robots from home for work. This industry is visibly experiencing rapid growth. According to 2025 market data, the global robotics market is expected to reach USD 50.8 billion, with service robots accounting for USD 40.58 billion, demonstrating strong growth potential. The application of CNC in the robotic arm industry extends beyond component manufacturing to control systems and versatile task execution.
Headline
Trend
From Solar to Wind: The Heart of Green Energy
When discussing the energy transition, attention often falls on the surface area of solar panels, the blades of wind turbines, or the massive structures of nuclear power plants. Yet behind these world-changing energy systems, the critical components that drive solar, wind, and nuclear operations rely heavily on precision-manufactured CNC machines. Often hailed as the “brains of manufacturing,” these machines, with micron-level precision and highly automated capabilities, serve as the invisible engine powering technological breakthroughs and future innovations in the energy sector.
Agree