Metal Spraying is Suitable for the Electroplating Process of Large and Small Workpieces
Knowledge

Metal Spraying is Suitable for the Electroplating Process of Large and Small Workpieces

Metal spraying is the process that uses compressed air or inert gas to spray molten, corrosion-resistant metal onto a metal surface to form a protective coating.
Published: May 04, 2022
Metal Spraying is Suitable for the Electroplating Process of Large and Small Workpieces

What is Metal Spraying?

Metal spraying, also called metallization, is a method of coating metal surfaces with thin films of melted atomized metals. As they are sprayed onto the metal surface, ionic reactions create a strong attractive force to hold the metal film to the base metal.

In metal spraying, the coating material is melted and atomized in a special spray sink or spray gun and sprayed onto the base material. Oxyacetylene flames are generally used, but other gases are sometimes used. A coated wire is automatically fed through a flame core, and as the wire is melted it atomizes and sprayed onto the base material by a compressed airflow. This atomizing process can be used with almost any metal that can be made into wire. Another type of spray gun sprays powdered material through a flame. The advantage of this method is that it can be used with materials other than metals, such as metal-ceramic composites, oxides, and cemented carbides.

Preparations Before Metal Spraying:

Since the bond between the coating material obtained by metallization and the base material is purely mechanical, the base material must be properly pretreated. To obtain a good mechanical bond, the substrate surface must be clean and free of oil.

A most common method of surface preparation is sandblasting. The grit is sharp enough to produce a truly rough surface. For cylindrical surfaces that can be turned on a lathe, it is effective to machine a very coarse thread and then roll it lightly with a roller cutter. Another improvement that can be used for flat surfaces is to use a grooving knife to cut a series of parallel grooves on the surface and then use a knurling knife to cut facets between the grooves. If the plated surface requires subsequent machining, the substrate surface should be prepared by roughing or grooving.

What are the Applications of Metal Spraying?

Metallization has many important uses in product design. Protective coatings such as zinc and aluminum are sprayed onto steel surfaces for corrosion resistance. Because metallization can metalize almost any metal or non-metallic surface, it provides a method of coating a conductive surface onto a poorly conducting or non-conducting surface. Copper or silver is often sprayed onto glass or plastic to create a conducting surface. After metallization, items can be treated in a variety of ways, such as by polishing or brushing, or can be left in the sputtered state. Metallization is often used as a decorative solution in the manufacturing and construction industries.

The Spray Coating Process:

  1. Degreasing treatment: clean with acetone or alcohol.
  2. Surface treatment: corona discharge treatment, ultraviolet irradiation treatment, etc.
  3. Bottom surface coating/hardening treatment: The bottom surface coating process can improve adhesion between the surface and the spray coating. Bottom surface coating and hardening treatments are only preparations before coating. There are used to prepare base materials that have poor adhesion to coatings such as steel.
  4. Sputtering process: Materials used for electrodes can be Al, SUS304, etc.

What Metal Spraying Processes are there?

Vacuum metal spraying process:

The vacuum coating process is a physical method of plating metal onto a substrate. Coating takes place in a vacuum chamber, where the metal is melted and becomes gaseous when it reaches its vaporization point. The gaseous molecules then condense on the target substrate, forming a relatively uniform coating. The vacuum system consists of a sealed chamber where the coating process takes place and multiple pumps outside the enclosure that pump air out to reach the vacuum required for the process. A power source supplies high voltage electricity to an electrode connected to a series of insulators containing tungsten filaments that evaporate the metal. There are eight to ten major steps in the vacuum metallization process. Generally, a spray coating takes 2 to 3 hours to complete.

Substrates suitable for vacuum metallization include metals (tin, steel, aluminum, etc.), plastics (ABS, polypropylene, styrene, etc.), and glass. To obtain a perfect, flawless coating, the raw substrate surface must be free of contamination such as release agents, fingerprints, dirt, dust, oil, and grease.

Nano spray:

Nano spraying, or nano-sputtering, is a process in which a silver ammonia solution is sprayed on the surface of a workpiece with a spray gun forming a silver mirror surface. A protective solvent can be added to the surface to form different colors. Advantages of the nano-sputtering electroplating process are that nano-sprayed products have better adhesion, impact resistance, corrosion resistance, water resistance, weather resistance, wear resistance, and scratch resistance, and have good anti-rust performance and excellent hardness. Compared with traditional electroplating, it is less polluting to the environment.

Nano spraying is can be used for the surface treatment of fine precision products as well as for large items such as automobiles and large electrical appliances. They are also be used for surface decoration and protection spraying in many other industries.

Published by May 04, 2022 Source :kknews, Source :read01

Further reading

You might also be interested in ...

Headline
Knowledge
Understanding the Logistics and Transportation Sector
As the number of e-commerce transactions continues to surge, there is a parallel increase in the demand for logistics services. Amidst the ongoing transformation and upgrade of the industry, the integration of smart technology has emerged as a pivotal factor in driving its development.
Headline
Knowledge
Understanding Mechanism Design and Its Practical Applications
Creating an effective mechanism design entails thoughtful consideration of factors such as materials, specifications, precision, manufacturing processes, and functionality. Moreover, it must be cost-effective to ensure the development of a successful mechanism design.
Headline
Knowledge
Understanding the Granulation Process
Plastic granulation technology plays a pivotal role in the manufacturing of plastic products and the recycling of resources. It is employed to produce a diverse range of plastic products or raw materials, offering both environmental and economic advantages.
Headline
Knowledge
What Constitutes Contemporary Architectural Frameworks for Robotic Computing?
The behavior of robots is frequently modeled as a computational graph, wherein data flows from sensors to computational technology, extending to actuators and then looping back. To enhance performance capabilities, robotic computing platforms need to adeptly map these graph-like structures to CPUs and specialized hardware, such as FPGAs and GPUs.
Headline
Knowledge
Anticipating the Emerging Trends in the Global Laser Industry
In light of the evolving global industry demands, the laser industry and technology are shifting their focus towards meeting the requirements of 5G semiconductors and smart vehicle processes. While Taiwan's laser industry has a well-established foundation built over the years, sustaining international competitiveness necessitates a proactive advancement in independent laser technology.
Headline
Knowledge
Selecting a Hydraulic Press and Understanding its Manufacturing Procedure
Hydraulic presses find applications in compaction, assembly, pressing, forming, embossing, and stretching. They play a crucial role in compaction within the cosmetics sector, assembly in the automotive industry, molding of electronic products, and stamping in the home appliance industry.
Headline
Knowledge
Introduction to RFID Tags: The Significance of RFID in Modern Retail Supply Chains
There are two types of RFID systems: passive and active. For those unfamiliar with RFID, you may be curious about the distinctions between these types and which one suits your application best. In the following, we offer a brief explanation.
Headline
Knowledge
Anticipating the Emerging Trends in the Global Laser Industry
In light of the evolving global industrial demands, the laser industry and technology are shifting towards meeting the requirements of 5G semiconductors and advanced processes for smart vehicles. While Taiwan's laser industry has made substantial progress over the years, maintaining alignment with international advancements necessitates a proactive push in independent laser technology.
Headline
Knowledge
Comprehending CNC Motion Control and Three Common Types
The primary advantage provided by various types of CNC machine tools is enhanced automation, as it allows for the reduction or elimination of operator intervention in the production of workpieces.
Headline
Knowledge
How is Automatic Optical Inspection (AOI) Technology involved?
What is AOI? AOI stands for automatic optical inspection technology, known for its non-contact nature, rapid speed, high precision, and stability. This technology effectively addresses the limitations of manual visual inspection in quality management.
Headline
Knowledge
What Constitutes a Planing Machine?
A shaper is a machine tool that employs the relative linear motion between a workpiece and a single-point cutting tool to shape a linear toolpath. Its cutting process is similar to that of a lathe, but it typically follows a linear, as opposed to a helical, trajectory.
Headline
Knowledge
What Constitutes the Principal Components of a Shaper Machine?
Shaper machines are intricate pieces of equipment designed for precision machining. They comprise several essential components, each contributing to the machine's overall functionality and effectiveness. To gain a comprehensive understanding of how a shaper machine operates, it's crucial to examine the role and interplay of these individual parts within the complete system.
Agree