Understanding the Granulation Process
Knowledge

Understanding the Granulation Process

Plastic granulation technology plays a pivotal role in the manufacturing of plastic products and the recycling of resources. It is employed to produce a diverse range of plastic products or raw materials, offering both environmental and economic advantages.
Published: Dec 21, 2023
Understanding the Granulation Process

Understanding Plastic Granulation: Enhancing Manufacturing Processes

Plastic granulation is a critical process in plastic manufacturing and resource recycling, offering both environmental benefits and economic advantages. This method involves size reduction, making plastic suitable for various products or as raw materials. The utilization of plastic injection mold machines in the plastics industry faces limitations, such as cooling spots, skinning, and potential lack of exhaust devices during injection, leading to issues like bubbles and radial flow patterns.

A solution to these challenges lies in employing a twin-screw extruder for granulation. This technology boasts robust plasticizing capabilities and includes an exhaust device. The twin-screw extruder ensures material plasticization reaches a molecular level dispersion, with the vacuum exhaust device eliminating excess water and impure gases from decomposing materials.

Exploring Extrusion Granulation: Tailoring Techniques to Materials

Extrusion granulation employs two primary methods: hot cutting and cold cutting. The choice between the two depends on material properties. Cold cutting, suitable for materials like polyethylene and polypropylene, involves plasticizing the material through an extruder, forming a round strip that is then cut into cylindrical particles after water cooling. In contrast, hot cutting involves directly cutting newly extruded plastic into pellets using a rotating blade attached to the die plate.

The hot-cutting granulation process comprises a twin-screw extruder, die head, pelletizing device, pellet conveying device, and cooling fan. This method ensures efficient pelletization by extruding material into the desired shape, cutting it into fixed shapes, and cooling it during the conveying process.

Incorporating Crushing Granulation Technology for Recycling

Crushing granulation technology is instrumental in recycling waste plastics. This process involves crushing, cleaning, drying, and pelletizing to recycle plastics, with sorting being a crucial initial step. Magnetic separation equipment aids in removing metal-containing impurities, allowing for further sorting of mixed plastic waste. The resulting recycled materials are categorized into simple and composite plastics based on their components.

Applications of Twin-Screw Extruder Granulator: A Versatile Solution

Twin-screw extruders find diverse applications, including the production of masterbatch, blending modification, exhaust, reactive extrusion, and direct extrusion.

Production of Masterbatch: Twin-screw extruders homogenize, disperse, and mix additives in the polymer matrix, creating masterbatch—a mixture of plastic particles with high additive proportions.

Blending Modification: Incorporating reinforcing materials, such as glass fiber, enhances the performance of materials by achieving high strength and impact resistance.

Exhaust: The twin-screw extruder's mutual meshing improves exhaust performance, with specific elements used to build pressure and release volatiles.

Reactive Extrusion: Ideal for bonding monomers during extrusion, reactive extrusion benefits from the twin-screw extruder's excellent mixing performance.

Direct Extrusion: This process, suitable for less stringent dimensional uniformity requirements, offers efficiency in producing finished products like films, plates, and pipes directly from granular extruded plastics.

Quality Commitment in Twin-Screw Extruder Manufacturing

In the production of each twin-screw extruder, a commitment to meeting high-performance standards is paramount. Rigorous quality control is implemented throughout the manufacturing process, ensuring strict auditing and inspection of equipment and components. From design to production, meticulous attention is given to detail, ensuring the delivery of high-quality extruders capable of meeting diverse industrial needs.

Published by Dec 21, 2023 Source: kknews, Source: twgreatdaily, Source: riw

Further reading

You might also be interested in ...

Headline
Knowledge
Essential for Precision Machining: A Complete Guide to Tungsten Carbide Center Drills
In modern manufacturing, precision is the core standard by which product quality and performance are measured. From aerospace components to medical devices, even a minor deviation can lead to serious consequences. When it comes to precision drilling, a critical challenge is ensuring that a drill bit can be accurately positioned at the start of a cut while maintaining stability during high-intensity operations. The tungsten carbide center drill is the professional tool engineered specifically to solve this problem.
Headline
Knowledge
From Cavitation Effect to Industrial Applications: The Secrets of Ultrasonic Cleaning
When your glasses, tableware, or electronic components are stained with stubborn dirt, what can you do? Traditional methods often require vigorous scrubbing or even harsh chemical solvents, which are not environmentally friendly and may scratch the item. At this moment, ultrasonic cleaning acts like an “invisible little helper”, reaching deep into grooves and gaps to gently yet effectively remove contaminants.
Headline
Knowledge
The “Spark Magician” of Metalworking
Electrical Discharge Machining (EDM) is a non-traditional machining process that removes metal through electrical sparks. Unlike conventional methods, it is not limited by material hardness and can precisely create deep cavities, micro-holes, and complex structures in hardened steel, tungsten carbide, or superalloys. The three main types of EDM include wire cutting, die-sinking, and hole drilling, which are widely applied in mold making, aerospace, automotive, and medical industries. Although EDM has a slower processing speed, works only with conductive materials, and requires consideration of electrode wear and surface treatment, its advantages in high precision, zero cutting force, and superior surface finish make it an indispensable technology in precision manufacturing. Moreover, it continues to evolve in line with the trend toward smart manufacturing.
Headline
Knowledge
Press Brake vs Shearing Machine: Functional and Technical Comparison of Industrial Processing Equipment
Press Brake and Shearing Machine are two essential types of equipment in the field of machine tools, widely used in the processing of metal, wood, and other materials. They play critical roles in manufacturing, enabling efficient and precise material forming and cutting. This article introduces the definitions, functions, technical features, and applications of folding and cutting machines, offering neutral and practical knowledge sharing.
Headline
Knowledge
Master Chuck Types & Selection: The Essential Guide for Machinists
In the world of precision manufacturing, every minute detail can determine the quality of the final product. The chuck is a critical yet often overlooked component—it's not just a tool for holding a workpiece, but the very heart of ensuring machining accuracy, efficiency, and safety. This article will take you on a deep dive into the diverse universe of chucks, covering their operating principles, design philosophies, common types, and how to select the right jaws and chucks for different needs. Whether you're new to the industry or a seasoned engineer, this guide will unlock the intricate secrets of chucks, helping you master every detail on your path to manufacturing success.
Headline
Knowledge
An Overview of Electrical Discharge Machining (EDM)
Electrical Discharge Machining (EDM) is a non-traditional manufacturing process that utilizes electrical sparks to remove material from a workpiece. Unlike conventional machining methods such as milling or turning, which rely on physical contact between a tool and the material, EDM operates without direct contact, making it ideal for processing hard or brittle materials that are difficult to machine otherwise. The process involves generating a series of rapid electrical discharges between an electrode and the workpiece, submerged in a dielectric fluid, which erodes the material through thermal energy. This technique has revolutionized precision manufacturing by enabling the creation of complex geometries with high accuracy.
Headline
Knowledge
Applications of Machine Tools in the Aerospace Industry
The aerospace industry is a highly specialized and technology-driven sector, encompassing the design, manufacturing, and maintenance of aircraft, spacecraft, satellites, and related equipment. Machine tools play a critical role in this field, enabling the precision machining of complex metal and composite material components. These tools enhance production efficiency while ensuring the accuracy and reliability required to meet the stringent safety and performance standards of aerospace. This document outlines the key applications, technologies, benefits, and future trends of machine tools in the aerospace industry.
Headline
Knowledge
Smart Healthcare Uncovered:How AI Is Transforming Clinical Practice?
With the rapid rise of artificial intelligence (AI), the healthcare industry is undergoing a disruptive transformation. AI is significantly improving diagnostic accuracy and treatment efficiency while profoundly redefining healthcare professionals’ roles and patient experiences. A comprehensive understanding of the core technologies and clinical applications behind this transformation is essential for grasping the future trends and strategic directions of smart healthcare.
Headline
Knowledge
Principle and Applications of Laser Cutting Machines
As the global manufacturing industry advances toward higher precision and efficiency, laser cutting technology has become a key enabler of industrial upgrading. Compared with traditional shearing, stamping, and mechanical cutting, laser cutting offers non-contact processing, higher accuracy, and greater flexibility. It significantly improves productivity while reducing secondary finishing. Today, it is widely adopted in metalworking and increasingly applied in electronics, aerospace, medical, and architectural design industries.
Headline
Knowledge
Why Are High-Quality Cutting Fluids Critical for Machining Quality?
In CNC and metalworking, cutting fluid is no longer just a coolant—it plays a critical role by providing lubrication, chip removal, and corrosion protection. With the right formulation and concentration, it can reduce cutting heat, minimize friction, extend tool life, and maintain workpiece accuracy. High-pressure cooling further enhances efficiency in deep-hole and high-speed machining. The pairing of tool material with the proper cutting fluid is equally crucial; correct selection and maintenance ensure process stability, prolong equipment life, and improve the overall work environment. Cutting fluid has become an indispensable investment in modern precision manufacturing.
Headline
Knowledge
Introduction to Emerging Printing Technologies: Opening New Horizons for the Future of Printing
With rapid technological progress and increasingly diverse market demands, traditional printing techniques are no longer sufficient to meet modern industry’s requirements for precision, efficiency, and sustainability. As a result, emerging technologies such as UV printing, 3D printing, and Nanoimprint Lithography (NIL) have risen to prominence, offering solutions with higher precision, broader applications, and lower production costs. These innovations have already demonstrated value across packaging, advertising, healthcare, semiconductors, and construction. In the following sections, we will explore their technical features and real-world applications, highlighting the advantages and future potential of these cutting-edge printing technologies.
Headline
Knowledge
The Core Standard for Life-Critical Systems: A Complete Guide to IPC Classification
In high-risk fields such as medical, aerospace, and automotive, IPC classifications determine PCB reliability and safety. Class 3 represents the highest standard, requiring zero tolerance for defects, complete via filling, adequate copper annular rings, and rigorous inspections to ensure operation under extreme conditions, while Class 2 suits long-term use in non-critical equipment with minor cosmetic flaws allowed. Class 3’s strict criteria cover component placement, soldering, plating thickness, and environmental testing—adding cost and production time, but far outweighing the risks of failure in life- or safety-critical systems. Thus, defining high-risk equipment as Class 3 during design is essential, making IPC classification a core safeguard rather than an option.
Agree