What are the Components of Automotive Semiconductors?
Knowledge

What are the Components of Automotive Semiconductors?

MCUs (microcontroller units) have a wide range of terminal applications, including home appliance controls, automotive electronics, education and entertainment, medical equipment, etc. Among them, automotive electronics and the Internet of Things are the main driving forces of the MCU industry.
Published: Jan 24, 2022
What are the Components of Automotive Semiconductors?

Consumers in the automotive market desire convenience, safety, and energy-savings. These expectations represent some of the increasing requirements for intelligent and energy-saving automobiles, and are a driving force in the research and development of automotive electronic technology. Major car manufacturers are focusing more on automotive electronics, and the proportion of automotive electronics costs of automobiles has risen from 2 to 3% in the 1980s to now making up to as much as 40 to 50% of the overall cost.

Consumers in the automotive market desire convenience, safety, and energy-savings. These expectations represent some of the increasing requirements for intelligent and energy-saving automobiles, and are a driving force in the research and development of automotive electronic technology. Major car manufacturers are focusing more on automotive electronics, and the proportion of automotive electronics costs of automobiles has risen from 2 to 3% in the 1980s to now making up to as much as 40 to 50% of the overall cost.

Secondly, intelligent safety features can enhance the safety performance of the vehicle. Safety control operations are mainly divided into three processes: data acquisition, data processing, and sending of instructions to the driver.

Entertainment, convenience, and safety features all require that the car be able to detect the environment, analyze the information, and make appropriate, efficient and accurate responses. All processes are completed by automotive electronics throughout systems, of which ECUs, (Electronic Controller Unit) MCUs, and sensors are the most important elements. All these components require semiconductors to function.

Automotive semiconductor key components:

  1. ECU: Electronic Control Unit 
    The first step in understanding automotive electronics is to understand the (ECU). Almost every automotive electronic system has an ECU as its core. An ECU is like an embedded computer which is used to control the major systems of the car. The ECU internal components include a microcontroller (MCU), input and output devices, circuits, AD (analog and digital) conversion circuits, power supply components, in-vehicle communication circuits, etc. As the complexity of the various control systems in the car increases, the number of ECUs in the car also increases. At present, there are hundreds of ECUs on some high-end model cars.
  2. MCU:
    Microcontrollers (MCUs) are most often used in consumer electronics, with the second-largest application being in automotive electronics. The most important task of the MCU in an ECU is to integrate of the central processing unit (CPU), memory, various input/output interfaces, timer/counter (timer/counter) etc. into one IC. The MCU is divided into four grades according to the bandwidth of the internal data bus: 4-bit, 8-bit, 16-bit, and 32-bit. Due to the complexity of application fields, different grades of MCUs are applicable. Simple functional systems, such as car air conditioners, windows, rear mirrors, etc., can use low-cost 8-bit MCUs. Brakes, airbags, and body stability controls that require high computing/processing capabilities use 16-bit MCUs. As automotive electronics moves towards greater intelligence, 32-bit is becoming more mainstream for components such as multimedia and entertainment devices, as well as driving control and other higher-end electronic information operations. 
    Besides being used in automotive electronics, 32-bit MCUs are used in the power system of the car to control the fuel ignition system. By increasing the accuracy of fuel injection and combustion control, fuel efficiency can be improved. 8-bit systems can no longer keep up with the processing speed requirements of fuel systems to meet modern environmental regulations. Hybrid engines and electronic vehicles also have high requirements for voltage control and electric recharge current control. When you step on the accelerator, because the system is controlled by electronics instead of traditional hydraulics, the power feedback requires extremely precise communication between systems to provide sufficient control. In hybrid or battery-powered vehicles, the battery not only powers the engine, but also powers the surrounding sensor subsystems. Interaction and feedback between the subsystems and the main system require the support of high-performance architecture.
  3. Sensor:
    The ECU / MCU of automotive electronics is responsible for data processing operations, and control of the various sensors responsible for collecting data. Driver assistance systems use image sensors, millimeter-wave radars, laser radars, acceleration sensors, angular velocity sensors, wheel speed sensors, tire pressure sensors, etc. These sensors are becoming more and more advanced, necessitating more advanced control systems.
    With the advancement of imaging technology, and the improvement of system integration capabilities of car manufacturers, the information from multiple image sensors distributed inside and outside the vehicle, can make up for the lack of human vision and assist driving and improve safety. For example, single systems such as lane departure warning systems, parking assist systems, blind-spot detection systems, and reversing warning can protect the safety of the driver. By further integrating these systems, a more comprehensive system can be constructed to give a safe and comfortable driving experience. The development of autonomous driving technology is constantly improving.

Ability to adapt to the environment:

In addition to the functional development and processing capabilities of key components that must keep pace with applications, automotive semiconductors must face more challenges in the operating environment than general consumer electronics or even industrial semiconductors. Vehicles must adapt to the climate environment of different countries and take into account long-term mobility and safety. Therefore, in addition to the low environmental requirements of IC components installed inside the body of the vehicle, other automotive electronic components must be designed to operate in harsh environments. Tolerable ambient temperature requirements for general ICs are at most minus 10°C to 70°C, but the requirements for automotive electronics are from minus 40°C to 155°C, with more than 1,000 cycles being required. In addition to moisture resistance, the requirements for high-temperature resistance, shock resistance, and failure rate are much stricter than those of general consumer electronic parts. Coupled with the long service life of the car, operating life and durability are also severely tested, and the supply life of parts must exceed 30 years.

Efficiency, decreased power consumption, and integration are the main technology development trends

At present, the mainstream design of MCUs includes three major trends: high performance, low power consumption, and high integration. In terms of high performance, 32-bit MCUs have become mainstream, especially in recent years. With the accelerated speeds of the Internet of Things, 32-bit MCUs have rapidly become popular. The price difference between 8-bit and 32-bit MCUs has gradually narrowed. Computing speed performance has reached 100MHz and above, and performance has also improved. The cores of 32-bit MCUs are mostly ARM Cortex-M4 to M7, which can support DSP and single-precision floating-point operation instructions. The clock operation frequency can also reach 400MHz, which is quite suitable for the Internet of Things with edge computing design.

Another trend is towards lower power consumption. Although low power consumption has always been a focus of MCU design, in the era of the Internet of Things, this feature will be further strengthened, especially for mobile devices that rely on battery power, where low power consumption is essential.

The first step in the operation of the IoT architecture is to gather the signals transmitted by a large number of low-level devices. These low-level devices are often scattered over a wide areas where power cable connection is not possible. Due to their large numbers, it is impossible to continually replace batteries, so low-power design is inevitable. For these types of applications, most manufacturers have proposed ultra-low-power MCU products, so that each product devise and its sensing node can maintain long-term operation.

Due to the diverse functions of the Internet of Things, to achieve high-integration, a single device must integrate as much hardware and software as possible. In addition to improving the performance of systems, manufacturers must continually reduce total material costs to remain competitive. At present, MCUs are integrating common technologies including the I/O interface, UART, USB, Ethernet, etc. 

In the past, encryption and decryption were mainly calculated using software, but this process lengthens the response time of the system and increase the power required for computing. Existing manufacturers now design the hardware to perform this function. This not only speeds up the computing process and reduces power consumption, but also improves security, making it more difficult to crack the encryption. 

As good communication is one of the most important requirements in IoT systems, advancements in wireless technology are also being developed. In the past, the MCU was used in conjunction with a wireless communication module. Recently, manufacturers have launched system-on-chip (SoC) which integrates the two. This important product strategy will help manufacturers increase user acceptance of the Internet of Things. With the gradual expansion of the market, more and more product types with improved functions will be developed. 

The Internet of Things is undoubtedly the most important growth driver for MCU development. This trend not only drives market growth but also forces MCU technology to continually make breakthroughs. Combining high performance, low power consumption, and high integration will be the most important design focus of MCUs.

Taiwan's auto industry has long been biased towards back-end manufacturing and assembly, and there has been little in-depth discussion on front-end system design. However, with some auto industries becoming fully autonomous, vehicle intelligence has become a focus of development. Taiwanese companies are investing far more than before in system integration systems, from front-end chips to back-end software, and are developing automotive technologies to meet future trends. With the acceleration of the demand for intelligent systems, the demand for MCUs will continue to rise in the future.

Published: Jan 24, 2022 Source :digitimes, Source :stockfeel

Further reading

You might also be interested in ...

Headline
Knowledge
Automation Definition and 5 Automation Values You Must Know
The emergence of automation has a great impact on people in various industries, because there are many highly repetitive labor jobs in factories, and the production capacity may vary due to differences in operators. With the introduction of Industry 4.0, Through the combination and application of various technologies, the automation of the production line can be controlled by machines from raw materials, assembly to distribution and packaging. People only need to set and check, which is a very important change for the factory. This article will share the definition of automation and the value it brings.
Headline
Knowledge
What is a Permanent Magnet?
Permanent magnets can be natural products, also known as lodestones, or artificially made. A material with a wide hysteresis loop, high coercivity, and high remanence can maintain a constant magnetism once magnetized. Also known as permanent magnetic material, hard magnetic material.
Headline
Knowledge
What is Direct Energy Deposition (DED) Metal Lamination Fabrication Printing Machine and Processing Technology?
Direct Energy Deposition (DED), also known as metal laser cladding, is one of the methods used to fabricate metal workpieces by additive manufacturing technology.
Headline
Knowledge
What are Measurements and Measuring Instruments? Understand the basic concepts of measurement
Engaging in quantitative observation cannot rely solely on human senses, such as vision, hearing, touch, etc., and often requires tools, that is, measuring instruments. Measurement refers to the numerical representation of the size of a manufactured object based on a certain standard (unit).
Headline
Knowledge
What Is A Diamond Tool?
Among the superhard materials, diamond is a kind of superhard material, and the other is cubic boron nitride. After a series of processing and processing procedures, the two superhard materials can be made into various tools and directly used to make various functional devices, which are collectively referred to as superhard material products. Here we focus on one of them - diamond grinding tool.
Headline
Knowledge
Application and Advantages of Planetary Reducer
Planetary reducer has been in existence for more than 30 years. During this long period of time, planetary reducer only appeared in high-end equipment in Europe and America. But, now automation is the trend, and planetary reducer has been widely used in machine tools, semiconductors, and packaging industries, medical food industry, aerospace, and other fields in recent years. High, medium and low power servo motors with planetary reducers have become standard. What are the applications and advantages of planetary reducers? This article will let you know more about planetary reducers.
Headline
Knowledge
What is MRO? Five Things You Have to Know!
The term MRO is an acronym that stands for maintenance, repair, and operations. The term is used to describe the set of operations and activities that are associated with the upkeep of a plant or facility which can include the physical maintenance of the structure or building, the systems that operate within the facility, and the equipment used to produce the plant or facility’s primary business output.
Headline
Knowledge
What Is a Sanding Machine? Carry Out the Sanding Process
A woodworking sander is a woodworking tool machine that uses an abrasive belt and abrasive cloth (paper) to sand the surface of the workpiece.
Headline
Knowledge
What Is a Hydraulic Press? Use pressure to change the shape of the workpiece
A hydraulic press is a machine that uses hydrostatic pressure to process metal, plastic, rubber, wood, powder, and other products. It is commonly used in pressing processes and press forming processes.
Headline
Knowledge
What Does BOM Management Mean? What Are the Purposes?
What does BOM management mean? What are the purposes? In manufacturing management information systems, BOM is often mentioned. BOM is the "Bill of Materials", also known as the product structure table. The Bill of Materials refers to the list of parts and components required for the product and its structure.
Headline
Knowledge
What Is Honing Machining?
Honing is a grain-incorporated cutting process used to improve the shape, dimensional accuracy, and surface quality of a workpiece while maintaining constant surface contact with the tool. Honing is performed after precision machining such as grinding.
Headline
Knowledge
What Is a Mold? Indispensable Tools in Industrial Manufacturing
A mold is a production tool that can produce parts with certain shape and size requirements. In industrial production, various presses and special tools installed on the press are used to make metal or non-metallic materials into parts or products of the desired shape through pressure. Such special tools are collectively referred to as molds.
Agree