What is Data Science?
Trend

What is Data Science?

Data science is a complex process of extracting, integrating, and analyzing data, combining knowledge from computer science, mathematics, statistics, and related fields to help companies understand their customers, understand industry competition, and make relative decision-making.
Published: Oct 07, 2022
What is Data Science?

What is Data Science?

Data science is a multidisciplinary approach to discovering, extracting, and presenting patterns in data by fusing analytical methods, domain expertise, and techniques.

Data science includes areas such as data mining, forecasting, machine learning, predictive analytics, statistics, and text analytics. With data growing at an alarming rate, companies are racing to capitalize on the insights in their data. Yet most organizations face a lack of experts to analyze their big data to find insights and explore problems that companies have yet to identify. To realize and monetize the value of data science, organizations must inject predictive insights, forecasting, and optimization strategies into business and operational systems. Many businesses are providing platforms to their knowledge workers to help them carry out their machine-learning projects and tasks. Being able to extract trends and opportunities from the vast amounts of data-infused into the business will give organizations a competitive advantage.

Data science includes descriptive, diagnostic, predictive, and prescriptive capabilities. This means that with data science, institutions can use data to figure out what happened, why it happened, what happened, and what they should do with expected outcomes.

Data analysis is the process of studying and summarizing data in detail. It is roughly the same as data science, except for one important detail. Data analysis will first establish data analysis models and goals, collect large amounts of data for analysis, and finally extract useful information and form conclusions that are helpful to the business.

What is a Data Scientist?

Data science is academic knowledge that spans many fields, including statistics, data mining, scientific method, artificial intelligence (AI) and data analysis, etc. The purpose is to extract value from data. Preparing data for analysis is an important part of data science. The process includes cleaning, summarizing, and processing data. But in larger enterprises, there are so-called data engineers to complete this task. In the end, data science is all about examining the results of analytics to help businesses, academia, or any data-related project gain informed insights.

A data scientist is a professional who knows all these things well. Their work involves applying a range of skills to analyze a wide variety of data: from the Internet to smartphones, sensors, and other sources, and derive actionable insights from it. A data scientist is all about identifying problems, asking them, designing methods, and analyzing the available data. A complete data team consists of data scientists, data analysts, and data engineers. Data analysts perform statistical work such as experimental design, data analysis, etc. Data engineers work on program implementation, such as the collection and organization of big data, and the deployment of algorithms.

  • Python Coding/R Programming:
    Although programming is not the main work of a data scientist, it will take relatively time to perform statistical operations without using tools. In addition, the amount of data is usually very large. Without using Python or R to assist in sorting, there is no way to use it.
  • Database/Coding:
    When it comes to data collection, it must be cleaned up and managed. Data scientists must have very high skills in this area. The main reason is the same as the quantity and quality of data. If you want to use the data well, you must Be sure to organize and manage the data first.
  • Machine Learning and AI:
    Data scientists must have a certain grasp of machine learning and artificial intelligence because their data are inseparable. Machine learning, or artificial intelligence, cannot be done without data.
  • Data Analysis:
    It was mentioned earlier that data scientists need to use SQL database management systems, mainly to store and effectively process data, and then use the stored data for analysis. Data scientists also need to be very familiar with data analysis and be able to find value from data and make use of it.
  • Data Visualization:
    In addition to knowing how to analyze data, data scientists must also be able to visualize it for interpretation. The stakeholders that data scientists need to face include bosses, managers, C-levels, senior managers, and other important roles in the company, but these people are not necessarily so proficient in the observation of data, so the visualization of data has become an important part of data science.
  • Mathematics and Statistics:
    Mathematics and statistics are essential skills for data scientists. In the work of data scientists, they face complex mathematical and statistical problems every day. Calculating risks, calculating possibilities, forecasting, etc., all need to be equivalent to mathematics and statistics. academic understanding.
  • Communication Skills and Teamwork:
    The ability to communicate and communicate is indispensable for teamwork, especially for data scientists. In a data or data team, in addition to scientists, there are data analysts, data engineers, and interested teams, so excellent communication skills and department exchanges will be particularly important.
  • Marketing Theory and Practical Experience:
    Data scientists also need to have marketing knowledge and practical experience, because their analysis and calculations often have a direct impact on the company's operations and marketing, and understanding marketing is of great help in judging the value of data.

The Difference Between Data Science and Data Analysis:

The way to distinguish data science and data analysis is to cover the scope of the problem. Data science covers a broader problem than data analysis. Data analysis will first establish the data analysis model and goal and then summarize. On the other hand, data science is deeper and asks more questions to uncover new knowledge and goals.

Data analysts perform content analysis on data from one dataset, while data scientists combine datasets from different sources to generate new insights.

What is Data Science Used for?

  • Descriptive analysis:
    The descriptive analysis examines data to gain insight into what happened or is happening in the data environment of the data. It features data visualization, such as pie charts, bar charts, line charts, tables, or generated narratives.
  • Diagnostic analysis:
    The diagnostic analysis is the examination of in-depth or detailed data to understand why something happened. It is characterized by techniques such as in-depth research, data exploration, data mining, and correlation. Multiple data manipulations and transformations can be performed on a given data set to discover unique patterns within each technology.
  • Predictive analytics:
    Predictive analytics uses historical data to make accurate predictions about possible future data patterns. It features techniques such as machine learning, prediction, pattern matching, and predictive modeling. In each technique, computers are trained to reverse engineer causal associations in the data.
  • Normative analysis:
    Prescriptive analytics take predictive data to the next level. Not only does it predict what might happen, but it also suggests the best way to respond to that outcome. It can analyze the potential impact of different options and recommend the best course of action. It uses graph analysis, simulation, complex event processing, neural networks, and recommendation engines from machine learning.

How Data Science Works?

  • Understand the business problem: The process of data science starts with understanding the problem that business users are trying to solve.
  • Collect and integrate raw data: Once the business problem is understood, the next step is to collect and integrate raw data. First, analysts must look at the available data. Often, the data will be in many different formats and many different systems, so data wrangling and data preparation techniques are often used to transform the raw data into a usable format suitable for the specific analytical technique that will be used. If data is not available, data scientists, data engineers, and IT often collaborate to bring new data into a sandbox environment for testing.
  • Explore, transform, cleanse, and prepare data: Most data science practitioners will use data visualization tools to organize data into graphs and visualizations that help them see general patterns, high-level correlations, and any potential outliers in the data. Analysts will transform, create variables, and prepare data for modeling.
  • Create and select a model from the data: Most analysts use algorithms to create models from input data and use techniques such as machine learning, deep learning, prediction, or natural language processing to test different models.
  • Test, tune, and deploy the model: Statistical models and algorithms are applied to datasets to attempt to generalize the behavior of target variables based on input predictors (factors that affect the target). The outputs are typically predictions, exceptions, and optimizations, which can be displayed in dashboards or embedded reports, or injected directly into business systems to make decisions near the point of impact. Then after the models are deployed into visualizations or business systems, they are used to score new input data that has never been seen before.
  • Monitor, test, refresh, and manage the model: Once the model is deployed, it must be monitored so that it can be updated and retrained as data changes due to changes in the behavior of real-world events. Organizations must therefore develop a model operations strategy to govern and manage changes to the production model. In addition to deploying models to dashboards and production systems, data scientists can create complex data science pipelines that can be invoked from visualization or dashboard tools. Often these have a reduced and simplified set of parameters and factors that can be tuned by citizen data scientists. This helps address the skills shortages described above. Therefore, citizen data scientists are usually business or domain experts who can select parameters of interest and run complex data science workflows without understanding the complexities behind them. This allows them to test different scenarios without involving data scientists.

What are the Benefits of Data Science for Businesses?

Data science is revolutionizing the way companies do business. Many businesses require a strong data science strategy to drive growth and maintain a competitive advantage.

  • Explore unknown transformation models:
    Organizations can use data science to discover new patterns and relationships that have the potential to transform organizations. It exposes low-cost changes in resource management that have the greatest impact on profit margins.
  • Innovation of new products and solutions:
    Data science uncovers gaps and problems that might otherwise go unnoticed. A deeper understanding of purchasing decisions, customer feedback, and business processes can drive innovation in internal operations and external solutions.
  • Instant optimization:
    Responding to changing conditions in real-time can be extremely challenging for businesses. This may result in significant loss or interruption of business activities. Data science can help companies predict changes and respond optimally to different situations.
  • Data Science Trends and Industries:
    Innovations in artificial intelligence and machine learning have made data processing faster and more efficient. Driven by industry demand, an ecosystem of disciplines, degrees, and job titles has formed within the data science field. Industry demands for cross-functional skills and expertise have seen data science exhibit strong expected growth in the coming decades.
  • Big Data Analytics:
    The development of data analysis benefits from the development of big data. The concept of big data is based on the concepts of volume, velocity, and veracity. In the era of big data, the three most important requirements are large, fast, and real data. While storing large amounts of data has historically been no problem, the methods for analyzing and processing this data are relatively limited.
  • Data Science Automation:
    According to the estimates of industry professionals, data science automation will have more breakthrough development in a very short period. The world is now in a phase of automation of data science models. With data science, model automation will be used more and more widely.
  • Cloud and Data Science:
    Cloud computing not only greatly reduces the cost of the device, software, and platform. At the same time, it greatly reduces the application and maintenance costs in data analysis. Cloud-based data science and machine learning platforms provide an ideal environment for data scientists to process and analyze data from the cloud.
  • Natural Language Processing:
    Deep learning has become one of the most popular fields in data science. Deep learning has attracted much attention because of its ability to learn complex nonlinear relationships.
  • Internet of Things:
    Data science is the core of the Internet of Things. It can obtain information from connected objects, and achieve data transmission through the connection between machines and the Internet. Up to now, automatic driving adopts data science to a certain extent technology.
Published by Oct 07, 2022 Source :tibco, Source :aws, Source :glints

Further reading

You might also be interested in ...

Headline
Trend
The Rise of Digital Textile Printing: Replacing Traditional Dyeing and Printing, Moving Toward a Low-Pollution, Zero-Inventory Era
Traditional textile dyeing and printing have long been criticized for their high water consumption, heavy use of chemicals, and high energy demand—factors that not only impose a severe burden on the environment but also put pressure on the textile industry as it faces increasingly stringent environmental regulations. With the advancement of global sustainability policies and growing consumer awareness of environmental protection, Digital Textile Printing (DTP) has gradually come into the spotlight, emerging as a key direction for textile industry transformation. Featuring flexible production models, reduced environmental impact, and the ability to support small-batch, diversified designs, this technology is rapidly reshaping the landscape of the printing and dyeing sector.
Headline
Trend
YCS and International Bicycle Brands: A Collaboration Story
As cycling becomes more popular globally, particularly in the high-end sports bicycle sector, the demand for precision parts is steadily increasing. These components not only play a central role in a bike's performance but are also a direct reflection of the rider's experience. Many international brands are now placing a greater emphasis on personalized design and high-quality machining to meet the diverse needs of different users.
Headline
Trend
The Dual-Track Growth of Mental Health and Post-Acute Care: A New Focus for Healthcare Institutions in 2025
In 2025, the global healthcare system faces the dual challenges of a surge in chronic diseases and an aging population. The focus is shifting from treating a single illness to promoting holistic health. In the post-pandemic era, the demand for mental health services has risen sharply, with a continuous increase in the number of people suffering from anxiety and depression. To meet this challenge, healthcare institutions are actively adopting a dual-track strategy, focusing on expanding behavioral health services and ensuring seamless transitions to post-acute care. This approach is designed to enhance the continuity of patient care and improve long-term health outcomes.
Headline
Trend
Global Freight Transportation Trends Analysis
In recent years, the global freight market has continued to expand. In 2023, worldwide freight volume reached 11.6 billion tons, with maritime shipping still accounting for the largest share, while air and land transport have grown rapidly due to the rise of e-commerce. In the face of trends such as digitalization, automation, and low-carbon transportation, companies that leverage the latest transportation data and models will gain a competitive advantage and be better equipped to respond to future market changes.
Headline
Trend
Taiwan's Textile Transformation: Digitalization and Localization for Agile Responsiveness
Historically, the global textile industry relied on mass production and economies of scale for low-cost manufacturing. However, as consumer demands become increasingly diverse and dynamic, small-batch, high-mix production and fast delivery have become the market mainstream. Taiwan, with its complete and advanced textile supply chain and high-end functional fabric technology, has long demonstrated competitiveness on the international stage. Facing global supply chain restructuring and the fast fashion trend, Taiwan's textile industry is actively pursuing a digital and localized transformation. The goal is to build a flexible, responsive agile supply chain, making manufacturing a sustained competitive advantage.
Headline
Trend
Data Powers Smarter Forklifts: IIoT Drives Next-Level In-Plant Logistics
Factory material handling is undergoing a major evolution! From traditional manually operated forklifts and conveyor belts to smart equipment equipped with sensors, AI, and IIoT, these machines do more than just move materials—they’ve become “decision-making partners” connecting production, warehousing, and the supply chain. Real-time monitoring, predictive maintenance, and dynamic scheduling boost efficiency, cut costs, and reduce accidents. Leading factories worldwide are already achieving impressive results with smart material handling. In the future, forklifts and AGVs will be capable of self-diagnosis, cross-plant collaboration, and even intelligent energy management, steering the rhythm of the entire factory. Are you ready to embrace this smart logistics revolution?
Headline
Trend
The Trends of Instant Beverages: A New Era of Convenience, Health, and Flavor
In today's fast-paced world, "convenience" has become a top consideration for many shoppers. Instant beverages not only quickly satisfy thirst and provide an energy boost, but their popularity has surged again with the rise of the "stay-at-home economy" and remote work. From classic 3-in-1 coffee to high-end pour-over tea bags, instant drinks are entering a new era that balances quality and health.
Headline
Trend
New Perspectives on Food Trends: The Evolution from General Wellness to Precise Conditioning
The relationship between modern people and food is undergoing a profound transformation. We no longer view food as merely a necessity for survival, but as an art form—a tool for actively managing our physical condition. This trend is shifting from the vague concept of "wellness" to a more precise, scientific, and personalized approach. In the fast-changing food market, this has become an undeniable mainstream trend.
Headline
Trend
The Path to Upgrading Metal Fabrication: Digital Transformation, Low-Carbon Challenges, and Global Opportunities
Facing resource- and energy-intensive production processes, the metal fabrication industry must harness smart manufacturing and automation—deploying CNC machining, robotic arms, and AI monitoring—to cut costs and errors while enhancing precision and delivery reliability. Integration of ERP, MES, and APS platforms increases process transparency and enables real-time scheduling adjustments, forming a seamless data and management loop. It’s recommended to support this with global market size data and figures on rising automation investments to boost credibility.
Headline
Trend
Urgent Need for Low-Carbon Transformation in the Metal Fabrication Industry
The urgent need for low-carbon transformation is especially pronounced in the metal fabrication industry, which has long been resource- and energy-intensive with high carbon emissions, making it a key sector for addressing climate change and global carbon neutrality goals.
Headline
Trend
The Multifaceted Innovative Impact of Microfactories on the Manufacturing Industry
Compared to traditional large factories, microfactories have lower investment costs and modular design advantages. Equipment and production units can be quickly replicated and replaced, reducing downtime and maintenance costs, enabling companies to respond more flexibly to market changes and product adjustments. Moreover, microfactories can shorten time-to-market by quickly responding to market demands and technological innovations. Through modular design and digitized production processes, new product development and market introduction speed up significantly, offering a clear advantage in competitive markets.
Headline
Trend
Trends in Advanced Material Processing Technologies and High-Precision Machine Tool Development
In aerospace, automotive, and high-performance manufacturing industries, advanced alloys (such as titanium alloys and nickel-based superalloys) and composites (such as thermoplastic carbon fiber composites) are becoming mainstream due to their lightweight, high strength, and high-temperature resistance. By 2025, the global aerospace composite market is expected to expand rapidly with an annual compound growth rate of about 13.9%, driven by the demand for environmental protection and net-zero emissions, which will further innovate and apply thermoplastic composite technologies. These new materials present challenges such as high hardness, tool wear, heat management, and processing deformation control, requiring processing equipment to have higher rigidity, precision, and thermal stability. Additionally, the production process's demand for rapid prototyping, modular assembly, and recycling drives the simultaneous upgrading of materials and equipment.
Agree