What Is Quenching?
Knowledge

What Is Quenching?

Quenching is a heat treatment process for metals and glass. Heating alloy products or glass to a certain temperature, then rapidly cooling in water, oil, or air containing minerals, generally used to increase the hardness and strength of the alloy.
Published: Jun 29, 2020
What Is Quenching?

What Is Quenching?

Hardened steel refers to the steel whose structure is martensite after being quenched and whose hardness is greater than HRC50. It occupies a considerable proportion of difficult-to-cut materials.

There are several key points in the selection of hardened steel processing tools:

First, The cutting characteristics of quench:

  1. High hardness, high strength, and almost no plasticity: this is the main cutting feature of quenched steel. When the hardness of the quenched steel reaches HRC50-60, its strength can reach σb=2100-2600MPa. According to the work-ability classification requirements of the processed material, the hardness and strength of the quenched steel are 9a, which is the most difficult to cut material.
  2. High cutting force and high cutting temperature: cutting chips from high hardness and high strength work pieces, the unit cutting force can reach 4500MPa. To improve the cutting conditions and increase the heat dissipation area, the cutter chooses smaller primary and secondary declination angles. At this time, it will cause vibration, which requires good rigidity of the processing system.
  3. It is not easy to produce a built-up edge: the hardened steel has high hardness and high brittleness. It is not easy to generate a built-up edge during cutting, and the processed surface can obtain lower surface roughness.
  4. The cutting edge is easy to break and wear: due to the high brittleness of the quenched steel, the cutting chips and the cutting edge are in short contact during cutting, and the cutting force and cutting heat are concentrated near the cutting edge of the cutting tool, which is easy to break and wear the cutting edge.
  5. Low thermal conductivity: The thermal conductivity of general quenched steel is 7.12W/(m•K), which is about 1/7 of No. 45 steel. The mach-inability grade of the material is grade 9a, which is difficult to cut. Due to the low thermal conductivity of hardened steel, it is difficult to remove the cutting head through the chips, the cutting temperature is very high, and the tool wear is accelerated.

Second, Material selection of quench processing tools

Reasonable selection of tool materials is an important condition for cutting hardened steel. According to the cutting characteristics of hardened steel, the tool material must not only have high hardness, wear-resistance, and heat resistance but also have a certain strength and thermal conductivity. The tool materials for processing hardened steel are:

  1. Cemented carbide: When choosing cemented carbide, the material of cemented carbide with an appropriate number of ultrafine particles of TaC or NbC should be selected first. Because after adding TaC to WC-Co cemented carbide, its original high-temperature strength at 800℃ can be increased by 150~300MPa, and the hardness at normal temperature can be increased by HV40~100. The cemented carbide grades commonly used for cutting hardened steel are YM051, YM052, YN05, YN10, 600, 610, 726, 758, 767, 813, etc.
  2. Hot-pressed composite ceramics and hot-pressed silicon nitride ceramics: adding metal elements such as TiC to Al2O3 and using a hot-pressing process improves the compactness of ceramics, improves the performance of alumina-based ceramics, and increases its hardness By HRA95.5, the flexural strength can reach 800~1200MPa, and the heat resistance can reach 1200℃~1300℃, which can reduce bonding and diffusion wear during use.
  3. Cubic boron nitride composite sheet (PCBN) tool: its hardness is HV8000~9000, composite bending strength is 900~1300MPa, thermal conductivity is relatively high, heat resistance is 1400℃~1500℃, which is the highest among tool materials It is very suitable for the finishing of hardened steel. The integrated CBN insert BN-S20, which was developed later, increased the application field of the CBN insert, and can be widely used in rough machining and intermittent machining.

Third, Hardness selection of experience points for selection of quenched steel processing tools

If it is an occasional production of a single piece, it can be processed with ordinary carbide tools of the appropriate brand. If the hardened steel is processed in batches, it can be selected from three kinds of tool materials: coated carbide, ceramic tools, and CBN tools according to the hardness and machining allowance of the workpiece.

  1. The quenched and tempered parts with Rockwell hardness below 45 HRC are suitable for the selection of coated carbide tools, which require relatively low-speed turning.
  2. For the machining of workpieces with a hardness of HRC40-55 degrees after quenching, ceramic blades are suitable, but intermittent turning should be avoided as much as possible. If the machining allowance is large or there is intermittent machining, the cubic boron nitride tool can be used.
  3. For workpieces with hardness above HRC55 after quenching, it is recommended to choose CBN cubic boron nitride cutters. The machining allowance is small. If the margin on one side is less than 30 wires, welding composite cubic boron nitride cutters can be selected. Generally, the depth of the knife is better than 0.3mm.

If the machining allowance is large, and the margin is more than 1mm on a single side, it is recommended to choose the integral CBN tool BN-S20, which can process hardened steel with a large number of cutters, reduce the number of passes, and improve the machining efficiency.

Fourth, The cutting methods of quench processing tools selection experience points

Carbide cutting tools and ceramic inserts are generally heat-resistant and require wet cutting when machining hardened steel. The thermal conductivity and heat resistance of the cubic boron nitride blade is very good. It can perform dry cutting under high-speed cutting without adding cutting fluid, which is green and environmentally friendly.

Note: If the cutting conditions of small holes or cutting fluid must be increased, you need to communicate with the tool engineer in advance to choose the wet-cut cubic boron nitride grade.

Fifth, Cutting parameters for the selection of experience points of quenched steel processing tools

The cutting parameters of cutting hardened steel are mainly selected according to the physical and mechanical properties of the tool material and workpiece material, the shape of the work piece, the rigidity of the processing system and the machining allowance. When selecting the three elements of cutting amount, first consider choosing a reasonable cutting speed, followed by the cutting depth, and then the feed amount.

When cutting materials with a hardness of HRC55-65, the cutting speed of the CBN tool should be 50-120m/min. Vc during milling=100~160m/min, feed per minute Vf=70~160mm/min; Vc=60~130m/min during reaming, ap=0.1~0.2mm, f=0.07~0.2mm/r . It should be noted that the use of cubic boron nitride tools for fine turning hardened steel, the workpiece hardness is higher than 45HRC, the best effect, the higher the hardness of the work piece, the lower the cutting speed, such as the work piece hardness of 70HRC, the cutting speed should be 60-80m/min is selected; when the cutting depth of the precision turning is 0.1~0.3mm, the feed amount is 0.05~0.025mm/r, the surface roughness of the work piece after finishing is Ra0.3~0.6μm, and the dimensional accuracy can reach 0.013mm. If it can be processed by a standard CNC lathe with good rigidity, the rigidity of the tool is good and the cutting edge is sharp, the surface roughness of the work piece after finishing turning can reach Ra0.3μm, and the dimensional accuracy can reach 0.01mm, which can reach the level of processing with a CNC grinder.

Sixth, The experience points of the selection of quenching steel processing tools, the use of turning instead of grinding tools

Feasibility of replacing grinding when hard turning steel with cubic boron nitride (CBN) tool

  1. Cutting complex surfaces and several complex surfaces on CNC machine tools can replace the grinding process, can reduce the labor of 1/3 to 2/3, and can ensure high position accuracy.
  2. Inner holes or small holes with complicated shapes. If grinding is used, the shape of the grinding wheel is required to be correspondingly complicated, and sometimes it cannot be ground. At this time, turning is the most advantageous.
  3. Several surfaces of a part (outer circle, inner hole, end face, stage, groove) need to be ground, and then turning is used, which can be completed in one process, and the tooling used for grinding can be subtracted.
  4. After quenching, the parts are easy to deform and the remaining margin is small, which is easy to cause waste products. At this time, the remaining margin can be larger. After quenching, the CBN tool is used to cut off the excess margin, and then grind to reduce the occurrence of large deformation Scrap.
  5. The surface high-frequency parts used under difficult conditions with large fluctuations in processing load are processed with CBN tools. The surface structure and physical and mechanical properties of the work piece are better than those of grinding, which can extend the service life of the parts.

Seventh, Thread processing for the selection of experience points for quenching steel processing tools

After quenching, the thread of the thread rolling wheel is generally ground by a thread grinder. But to improve the processing efficiency and solve the difficulty without thread grinding, it can also be processed by turning.

  1. Technical requirements for thread rolling wheel: the material of the blank is Cr12MoV alloy tool steel, the hardness is HRC59 after quenching, the pitch is 1.5mm, the number of thread heads is 10, the half-angle α/2=30º±25′, the tooth depth It is 0.922mm, the tooth tip height h1 = (0.435±0.042) mm, and the tooth root height h2 = (0.487(+0.010/-0.029)mm.
  2. Machine tool and cutter: The machine tool is a type 8955 290mm shovel tooth lathe produced by Dalian, and the attachment of the machine tool is an index plate. The tools are divided into rough turning tools and fine turning tools. The tool geometry parameter is: γ. = -3º, α. =5º, α'=0º~2º, εr=60º20', λs=-5º, the front blade is inclined by 3º facing the spiral direction. After grinding the tools at all angles, grind them with diamond whetstones, and produce negative chamfers at the main and auxiliary blades and the tip of the blade.
  3. Cutting amount: cutting speed 26.2m/min, rough turning thread aP=0.1~0.15mm, finishing turning aP=0.05~0.08mm. In turn, each time the tool is moved, the head is divided once to ensure that each tooth is evenly removed.
  4. Precautions: To prevent the tip of the knife from collapsing when cutting in and out, the ends of the thread are inverted by 30º angle. To accurately control the depth of each time the knife is eaten, place a 100-meter dial in the horizontal direction.

Compared with grinding, turning grinding technology has higher processing efficiency than grinding. In hard turning, Valin BN-S20 can use large cutting depth intermittent cutting, coupled with high work piece speed, the metal removal rate is usually 3 to 4 times that of grinding processing, power consumption, and labor, but the material consumables are only 1/5 of grinding.

Risk factors: The clearance and rigidity of the machine tool used for hard turning determine the probability of the occurrence of vibration knife and tool letting problems, and will also affect the dimensional accuracy and surface roughness of the processed work piece, so the user needs to consult and select according to his work piece requirements.

Published by Jun 29, 2020 Source :kknews

Further reading

You might also be interested in ...

Headline
Knowledge
From Cavitation Effect to Industrial Applications: The Secrets of Ultrasonic Cleaning
When your glasses, tableware, or electronic components are stained with stubborn dirt, what can you do? Traditional methods often require vigorous scrubbing or even harsh chemical solvents, which are not environmentally friendly and may scratch the item. At this moment, ultrasonic cleaning acts like an “invisible little helper”, reaching deep into grooves and gaps to gently yet effectively remove contaminants.
Headline
Knowledge
The “Spark Magician” of Metalworking
Electrical Discharge Machining (EDM) is a non-traditional machining process that removes metal through electrical sparks. Unlike conventional methods, it is not limited by material hardness and can precisely create deep cavities, micro-holes, and complex structures in hardened steel, tungsten carbide, or superalloys. The three main types of EDM include wire cutting, die-sinking, and hole drilling, which are widely applied in mold making, aerospace, automotive, and medical industries. Although EDM has a slower processing speed, works only with conductive materials, and requires consideration of electrode wear and surface treatment, its advantages in high precision, zero cutting force, and superior surface finish make it an indispensable technology in precision manufacturing. Moreover, it continues to evolve in line with the trend toward smart manufacturing.
Headline
Knowledge
Press Brake vs Shearing Machine: Functional and Technical Comparison of Industrial Processing Equipment
Press Brake and Shearing Machine are two essential types of equipment in the field of machine tools, widely used in the processing of metal, wood, and other materials. They play critical roles in manufacturing, enabling efficient and precise material forming and cutting. This article introduces the definitions, functions, technical features, and applications of folding and cutting machines, offering neutral and practical knowledge sharing.
Headline
Knowledge
Master Chuck Types & Selection: The Essential Guide for Machinists
In the world of precision manufacturing, every minute detail can determine the quality of the final product. The chuck is a critical yet often overlooked component—it's not just a tool for holding a workpiece, but the very heart of ensuring machining accuracy, efficiency, and safety. This article will take you on a deep dive into the diverse universe of chucks, covering their operating principles, design philosophies, common types, and how to select the right jaws and chucks for different needs. Whether you're new to the industry or a seasoned engineer, this guide will unlock the intricate secrets of chucks, helping you master every detail on your path to manufacturing success.
Headline
Knowledge
An Overview of Electrical Discharge Machining (EDM)
Electrical Discharge Machining (EDM) is a non-traditional manufacturing process that utilizes electrical sparks to remove material from a workpiece. Unlike conventional machining methods such as milling or turning, which rely on physical contact between a tool and the material, EDM operates without direct contact, making it ideal for processing hard or brittle materials that are difficult to machine otherwise. The process involves generating a series of rapid electrical discharges between an electrode and the workpiece, submerged in a dielectric fluid, which erodes the material through thermal energy. This technique has revolutionized precision manufacturing by enabling the creation of complex geometries with high accuracy.
Headline
Knowledge
Applications of Machine Tools in the Aerospace Industry
The aerospace industry is a highly specialized and technology-driven sector, encompassing the design, manufacturing, and maintenance of aircraft, spacecraft, satellites, and related equipment. Machine tools play a critical role in this field, enabling the precision machining of complex metal and composite material components. These tools enhance production efficiency while ensuring the accuracy and reliability required to meet the stringent safety and performance standards of aerospace. This document outlines the key applications, technologies, benefits, and future trends of machine tools in the aerospace industry.
Headline
Knowledge
Smart Healthcare Uncovered:How AI Is Transforming Clinical Practice?
With the rapid rise of artificial intelligence (AI), the healthcare industry is undergoing a disruptive transformation. AI is significantly improving diagnostic accuracy and treatment efficiency while profoundly redefining healthcare professionals’ roles and patient experiences. A comprehensive understanding of the core technologies and clinical applications behind this transformation is essential for grasping the future trends and strategic directions of smart healthcare.
Headline
Knowledge
Principle and Applications of Laser Cutting Machines
As the global manufacturing industry advances toward higher precision and efficiency, laser cutting technology has become a key enabler of industrial upgrading. Compared with traditional shearing, stamping, and mechanical cutting, laser cutting offers non-contact processing, higher accuracy, and greater flexibility. It significantly improves productivity while reducing secondary finishing. Today, it is widely adopted in metalworking and increasingly applied in electronics, aerospace, medical, and architectural design industries.
Headline
Knowledge
Why Are High-Quality Cutting Fluids Critical for Machining Quality?
In CNC and metalworking, cutting fluid is no longer just a coolant—it plays a critical role by providing lubrication, chip removal, and corrosion protection. With the right formulation and concentration, it can reduce cutting heat, minimize friction, extend tool life, and maintain workpiece accuracy. High-pressure cooling further enhances efficiency in deep-hole and high-speed machining. The pairing of tool material with the proper cutting fluid is equally crucial; correct selection and maintenance ensure process stability, prolong equipment life, and improve the overall work environment. Cutting fluid has become an indispensable investment in modern precision manufacturing.
Headline
Knowledge
Introduction to Emerging Printing Technologies: Opening New Horizons for the Future of Printing
With rapid technological progress and increasingly diverse market demands, traditional printing techniques are no longer sufficient to meet modern industry’s requirements for precision, efficiency, and sustainability. As a result, emerging technologies such as UV printing, 3D printing, and Nanoimprint Lithography (NIL) have risen to prominence, offering solutions with higher precision, broader applications, and lower production costs. These innovations have already demonstrated value across packaging, advertising, healthcare, semiconductors, and construction. In the following sections, we will explore their technical features and real-world applications, highlighting the advantages and future potential of these cutting-edge printing technologies.
Headline
Knowledge
The Core Standard for Life-Critical Systems: A Complete Guide to IPC Classification
In high-risk fields such as medical, aerospace, and automotive, IPC classifications determine PCB reliability and safety. Class 3 represents the highest standard, requiring zero tolerance for defects, complete via filling, adequate copper annular rings, and rigorous inspections to ensure operation under extreme conditions, while Class 2 suits long-term use in non-critical equipment with minor cosmetic flaws allowed. Class 3’s strict criteria cover component placement, soldering, plating thickness, and environmental testing—adding cost and production time, but far outweighing the risks of failure in life- or safety-critical systems. Thus, defining high-risk equipment as Class 3 during design is essential, making IPC classification a core safeguard rather than an option.
Headline
Knowledge
The Power of Color: How the Printing Industry Protects Brand Quality
In the printing industry, color has always been a core element influencing both quality and sensory experience. Whether in packaging, advertising, or publications, color accuracy directly affects consumer perception and trust in a brand. With the rise of digitalization and globalization, companies increasingly demand brand consistency, making color management more than just an aesthetic concern—it is a safeguard for printing quality and brand value. This article explores the importance of color management, the application of ICC color calibration, and Pantone’s role in brand identity, providing a comprehensive overview of the core knowledge and practical value of color management in printing.
Agree