What is Smart Manufacturing?

What is Smart Manufacturing?

Wisdom Manufacturing (WM) is the use of advanced manufacturing technology and new-generation information technologies such as the Internet of Things, big data, cloud computing, artificial intelligence (AI), etc., to highly customize every link of the production process and use advanced manufacturing models to adapt to rapidly changing external market demands.
Published: Feb 08, 2022
What is Smart Manufacturing?

In 2021, the size of the global smart manufacturing market reached US$305 billion, and is expected to reach US$450 billion by 2025. With a compound annual growth rate of 10.5%, smart manufacturing will usher in the growing trend of the manufacturing market.

Previous manufacturing models usually pursued automation to mass-produce products. But now, more and more manufacturers are turning to smart manufacturing to achieve rapid customized production of products to meet customer needs. The benefits of smart manufacturing have been realized through conservative strategies such as strengthening manufacturing resilience, to gradually improving production capacity and efficiency, energy conservation, emission reduction, and recycling. All these have become important keys to boosting the growth of the smart manufacturing market.

Smart manufacturing gap analysis: Separation of data and business scenarios

With the blessing of digitalization, the manufacturing industry is being continuously strengthened. The industry is seeing the intelligent transformation of production methods, organization, supply chains, and manufacturing modes driven by new forms of marketing, services, and design.

The overall business strength of the company has improved, but there is still a gap in traditional fields such as device automation and intelligence. On the one hand, the lack of corresponding technical and production processes, coupled with the lack of motivation for automation upgrades due to cost issues, has resulted in low penetration and utilization rates of smart factories and smart workshops. On the other hand, the level of data flow is not enough to support the automatic execution between multiple business systems, which reduces the fluency of the business chain and the automatic collaboration between systems is not high.

The core of smart manufacturing: Generating value through data flow

Smart factories are the key to future development in industry, and the speed of device interconnection will be further accelerated. The standardization of production is guaranteed through data monitoring so that in the face of emergencies, production can respond immediately and data can act as a conductor to reduce risks.

In the manufacturing sector, data is an important resource. The manufacturing industry has an extensive accumulation of data which the Industrial Internet of Things (IIoT) can use to create major advantages. Whether it is the IIoT or smart manufacturing, all industrial elements, the entire industrial chain, and the entire value chain, including people, materials, and machinery are deeply interconnected.

Smart factory: Data culture should play an important role

An enterprise's digital development strategy, overall framework, cultural accumulation, management model, and key processes are mutually enhancing. To gain value from the information center, new technologies need to be developed and integrated.

Important elements of smart manufacturing:

Manufacturers that can master smart manufacturing will become the leaders of Industry 4.0. The following elements will help to build a good foundation and speed up the implementation of smart manufacturing.

  1. Element 1: Import automation equipment
    Although automation equipment is one of the foundations of smart manufacturing and can replace some labor-based jobs, it is important to match and optimize each link of design, production, and service to have high-efficiency and low-cost processes. If automation equipment is randomly introduced it may just be a waste of investment and have little benefit.
  2. Element 2: Device connection and data integration
    After automation equipment has been obtained, the next step is to connect the equipment. The data of each piece of equipment can be integrated with the technology of the Internet of Things, and the manufacturing process can be optimized.
  3. Element 3: Remote Monitoring
    Smart manufacturing has replaced some physical work, allowing people to carry out more decision-making and technical work. Through remote monitoring, operators can monitor the status of equipment at any time, adjust manufacturing schedules in real-time, and detect equipment malfunctions to increase productivity and extend equipment life.
  4. Element 4: Combining AI technology
    The ultimate goal of smart manufacturing it to combine artificial intelligence with manufacturing, and is an important trend at present. AI allows equipment to be upgraded, and through self-learning, information is collected which can be used to continuously optimize production processes.
Challenges currently faced by manufacturers:

With the digital transformation brought by Industry 4.0, not only the manufacturing industry, but the government as well, hopes to increase intelligent industry. Many manufacturing industries only saw Industry 4.0 as a means to an automated, unmanned factory, however this led to a lot of money being invested, without gaining the full potential of smart manufacturing.

Several difficulties are generally encountered during transformation. For example, the integration of automated equipment in production lines requires planning and design to create a complete system that will generate maximum benefits. Although today's technology has gradually matured, enterprises often cannot afford the cost of high-tech applications that would bring the economic benefits that result from implementing smart manufacturing. During the transformation, there will be a period of time required for manpower and system integration and adjustment. In addition to transferring data, recruitment of talents or internal training is also required. This should be taken into consideration to speed up the adaptation time.

Many enterprises will be eager to carry out industrial transformation. Before the transformation, they should first evaluate the situation within the enterprise, plan for possible problems, and have a complete integration plan to make for a smooth transformation.

Application of smart manufacturing:
  1. Expand 5G applications:
    The three major features of 5G (URLLC, mMTC, eMBB) are expected to provide secure, fast, and highly reliable communications, driving the transformation and upgrading of the manufacturing industry to smart factories. It is also necessary to develop the surrounding supply chain and ecosystem together with telecom operators, system integrators, and Netcom operators. In the future 5G+AI innovation will be able to handle one million edge devices within one square kilometer with optimal performance.
  2. Import AI interpretability:
    Humans and machines must cooperate, and interpretability must be used to guide people to make corresponding decisions.
  3. Federated Learning Model:
    Takes into consideration that when training AI models, traditional centralized learning cannot be carried out. Privacy, regulations, geographic regions, and industry competition data all have to be considered. Model sharing is used instead of data sharing to overcome application differences of knowledge sharing. Smart manufacturing can be used in areas where small and medium-sized enterprises are clustered and have common AI requirements, but require product differentiation.
  4. Information security protection:
    The most common security threats in Taiwanese manufacturing are ransomware, malware attacks, and phishing attacks. In the future, enterprise defense will move towards a new architecture that integrates IT and OT, so that the OT side will also be included in information security protection, and a unified solution will be established to alleviate the challenges of digital transformation.

The future of smart manufacturing focuses on:

The core of smart manufacturing is real-time integration of data and equipment, so latency, security, and computing power will be optimized. Future development will focus on edge computing and 5G, such as AR/VR, machine vision. Beyond the important basic applications, such as digital twins and predictive maintenance, technology will support the overall application. Smart manufacturing can also improve energy optimization, reducing carbon emissions. Green IoT technology will be a key element of future smart manufacturing equipment and factory design.

Taiwan is expected to gain an edge in the micro-factory niche:

Taiwan's manufacturing industry has the advantages of high customization and supply chain clustering, and the smart manufacturing value chain is relatively complete. Many manufacturers have invested in the integration and application of smart solutions, providing a variety of one-stop service options such as equipment health inspection and machine vision, effectively reducing the threshold for introduction. Continuing this development trend, micro-factories will be a key entry point for Taiwanese manufacturers to explore business opportunities in the future.

In the past, there were multiple global divisions of labor in the smart manufacturing value chain. However, with the return of the manufacturing industry to normal, after the turmoil in recent years, short-chain and localized production has risen, so new types of micro-factories have been developed. Micro factories rely on a high degree of automation and accurate analysis to improve product quality with minimal resources. The benefits come from a flexible supply chain, streamlined manpower, and low initial costs. Manufacturers can take advantage of niche markets by making transformations that upgrade and increase product output.

Published by Feb 08, 2022 Source :eettaiwan, Source :finereport, Source :machsync

Further reading

You might also be interested in ...

Electric Vehicle Business Opportunities, Creating a New Generation of Automotive Components, and a New Industrial Layout
Under the international consensus on carbon reduction, the wave of electric vehicles has swept the world and has become the focus of attention from all walks of life. It is predicted that the proportion of electric vehicles will increase significantly from 2030, and it is estimated that it will reach 55% of the global car market by 2040, surpassing the proportion of traditional fuel vehicles. In the era of electric vehicles, it will indirectly lead the machine tool industry to develop a new layout.
Business Opportunities for Lightweight Electric Vehicles
With the global electric vehicle market, the speed of research and development of new electric vehicles has been accelerated, and the density of charging stations has been continuously increased. Under the booming development, when consumers buy electric vehicles, they hope to enjoy the convenience of battery as the existing internal combustion engine vehicles that enjoy the relatively high density of gas stations, and the short single refueling time. Don't want to spend too much unnecessary effort of "power charging".
What is WITMED?
Under the influence of the epidemic, the global demand for telemedicine has increased significantly. The development of digital medical care is an important means to promote medical equality and achieve comprehensive health coverage. Telemedicine care will become the new medical routine "New Normal", and the integration of AI wisdom in medical technology will be accelerated after the epidemic. An important trend with information flow.
What is Wide Bandgap (WBG)?
In the field of semiconductor materials, the first generation of semiconductors is Si, the second generation is GaAs, and the third generation of wide energy gap semiconductors refers to SiC and GaN.
The Future Development Trend of Light Sensors
A light sensor is a sensor that converts light signals into electrical signals using photosensitive elements. The light sensor is usually composed of a set of light projector and light receiver. Light sensors are generally composed of three parts: light source, optical path and optoelectronic components. The measured changes are converted into changes in optical signals are further converted into electrical signals with the help of photoelectric elements. In the future, with the development and popularization of Internet of Things technology, the application of light sensors will penetrate into all aspects of human life.
The Output Value of Medical Materials Will Approach 500 Billion Us Dollars In 2023! 3D Printing Has Become a New Wave in The Medical Field
The technology of 3D printing medical materials has soared. The new technique "Layered Manufacturing Technology", also known as 3D printing, which is produced by layer-by-layer additive method, has become a popular in recent years. With the rapid advancement of 3D printing technology, the market of 3D printing medical materials has greatly grown.
The Advanced Smart Vehicle Market with Unlimited Business Opportunities - The Key Innovation Driver of Automotive Electronic Systems
As electric vehicles and hybrid vehicles gradually gain popularity in the market, automotive electronic systems may become the key technology areas that are most valued by various electronic system suppliers. Advances in technologies such as electronic active suspension technology and electric vehicle drive systems in the automotive industry have continued to expand the application of power electronic systems in the automotive field.
Industry 4.0 Wave, Taiwan's Rubber and Plastics Industry Develops Innovative Business Opportunities Towards Circular Economy
According to GLOBAL TRADE ALTAS statistics, the boom of the rubber and plastics industry has rebounded due to the growth of the aerospace and automotive industries and the market demand for consumer goods. With the economic growth of Asian countries, the Asia-Pacific region has become the largest and fastest-growing region in the world's plastic and rubber industry. About 40% of plastic and rubber machinery is manufactured in Asia. The fourth industrial revolution combines machinery and information and communication, both of which are the most advantageous industries in Taiwan. Taiwan's plastic and rubber machinery industry combines these two advantages and applies smart manufacturing new business models to strengthen competitive advantages and seek to create niche points. New business opportunities have brought Taiwan's plastics and rubber machinery industry to a new peak.
Price Increase in An All-Round Way in Bicycle Industry Chain
The market survey of the bicycle industry chain found that since the outbreak of the epidemic in 2020, the average price of upstream raw materials has increased by about 50%.
Can Wearable Devices Really Help You with Health Management?
Wearable devices mainly use built-in or additionally installed software to capture physiological signals and then feed them back to the wearer, which can quickly let the wearer know the current physical health information, especially with the development of smart phones. People can see the physical condition in real time and make timely adjustments. Wearable devices such as various health bracelets are becoming more and more popular, and they can be easily purchased in physical stores or online shopping, and more and more functions, ranging from step management, motion track tracking, sedentary reminder, calculation of calories, to dynamic heart rate monitoring, blood pressure measurement and sleep management, etc., various health management functions are becoming more and more diverse, but this has also made people curious, what is the difference between the physiological data monitored by a bracelet related to the hospital's precision instruments in management?
2022 Technology Industry Pulse - Continued
It's that time of year again, check out the predictions for the most promising emerging technology trends to watch in 2022. Paying close attention to the following topics and they will be covered in details for what is happening around the globe.
2022 Technology Industry Pulse
Technology today is evolving at a rapid pace, enabling faster change and progress, causing an acceleration of the rate of change. However, it is not only technology trends and emerging technologies that are evolving, a lot more has changed this year due to the outbreak of COVID-19 making IT professionals realize that their role will not stay the same in the contactless world tomorrow.