What Is the Core of Smart Manufacturing and Industry 4.0?

What Is the Core of Smart Manufacturing and Industry 4.0?

Industrial 4.0 revolution swept through the entire manufacturing industry. Various countries and regions are actively deploying Industry 4.0 and smart manufacturing. How does Taiwan respond? How to combine your own advantages to gain a competitive advantage in this global 4.0 manufacturing revolution? Industrial reform involves not only technology, but also the integration and breakthrough of ideas.
Published: Jun 03, 2020
What Is the Core of Smart Manufacturing and Industry 4.0?

Nowadays, the manufacturing industry is facing very different conditions because the market is changing rapidly and competition is intensifying. Demand is beginning to be personalized and customized. However, the corresponding production conditions cannot be quickly and flexibly responding to. And now, the fourth industrial revolution of the entire manufacturing industry struck. How to combine your own advantages to gain a competitive advantage in this global 4.0 manufacturing revolution? But first, let us learn clearly about what is industry 4.0?

What is Industry 4.0? What is smart manufacturing?

Industry 4.0 refers to the "fourth industrial revolution", not just to create new industrial technology, but to focus on the integration of existing industry-related technologies, sales, and product experience, through the establishment of industrial artificial intelligence technology smart factory with adaptability, resource efficiency, ergonomics, and integrate customers and business partners in business processes and value processes to provide comprehensive after-sales service. Its technical foundation is the intelligent integrated sensory control system and the Internet of Things.

Although such a structure is still being explored, if it can be realized and applied one after another, it will eventually be able to construct a new intelligent industrial world with conscious awareness, and can directly generate a relevant solution that fully satisfies customers by analyzing various huge amounts of data Solution products (customized demand), can also use computer forecasting, such as weather forecasting, public transportation, market survey data, etc., timely accurate production or scheduling of existing resources, reducing excess costs and waste, etc. (optimization on the supply side) It should be noted that industry is only a component of this intelligent world, and it is necessary to understand “how the industry adapts to the future life under the intelligent network” in order not to confuse the various concepts of industry.

Wisdom Manufacturing (WM) is a new generation of advanced manufacturing technology that uses advanced manufacturing technology and the Internet of Things, big data, cloud computing, artificial intelligence (AI), and other new generations to make every link of the production process highly customized/intelligent Model to adapt to rapidly changing external market demands. In the past, manufacturing was the pursuit of automation, mass production of similar products, and smart manufacturing required the rapid customization of products according to customer needs. A core department of Industry 4.0 in smart manufacturing.

What is the plan for global smart manufacturing and Industry 4.0?

Various countries are vigorously developing smart manufacturing and Industry 4.0, returning from the manufacturing industry in the United States, Industry 4.0 in Germany, Japan’s new robot plan, and China’s manufacturing in China 2025. Start early to maintain an advantageous position and start late to rise Pursuing, according to its own advantages, different countries have different implementation strategies, but they are all striving to maintain their advantages in the global manufacturing competition in the key technologies of Industry 4.0 such as the Internet of Things/Big Data/AI.

Global government strategy:
  • In 2006

    Germany (high-tech strategy):
    Increase national investment in scientific research, add an R&D budget of 6 billion euros, and identify key R&D areas and projects.

  • In 2008

    United Kingdom (High-Value Manufacturing Strategy):
    The five supporting measures encourage British companies to produce more world-class high-value-added products locally, ensure that high-value manufacturing (HVM) becomes the main driving force for the development of the British economy, and promote innovation in the entire process from concept to commercialization.

  • In 2010

    Germany (High-Tech Strategy 2020):
    Focus on the areas demanded by the five countries, including climate and energy, nutrition and health, logistics, safety, and communications, and identify future development projects in each area.

  • In 2011

    American AMP strategy (Advanced Manufacturing Partnership):
    Connect industry, academia, and federal government departments to jointly invest in emerging technologies to create high-quality American products and gain global competitive advantage.

  • In 2013

    United Kingdom (Strategy 2050):
    Manufacturing is not manufacturing first and then selling in the traditional sense, but service plus remanufacturing (production-centric value chain), the four major development trends of manufacturing in the future, and challenges to the British government.

    Germany (Industry 4.0 strategy):
    It is part of Germany's high-tech strategy 2020, which elaborates on the vision of Industry 4.0 and proposes specific measures in eight areas on how to implement the strategy.

    Japan (Industry Revitalization Project):
    Use equipment and R&D to promote investment to revitalize manufacturing

    France (Industrial New France):
    Pushing France back on the road to industrialization and making France’s industrial genes stronger Use digital technology to promote industrial transformation and upgrading, and propose nine industrial solutions.

  • In 2014

    United States (AMP2.0)
    The AMP 1.0 strategy is more a description of the US manufacturing blueprint, and 2.0 emphasizes more specific implementation measures.

    Korea (Manufacturing Innovation 3.0 Strategy)
    The focus is on the integration of IT, software, services, and manufacturing to create higher added value in the manufacturing industry, and then nurture new industries. Adopt the method that large enterprises drive small enterprises to move towards 4.0, and vigorously develop 13 emerging power industries such as drones, smart cars, robots, smart wearable devices, and smart medical treatment.

    India (Made in India plan):
    Aiming to strengthen India's position as a global design and manufacturing center, the first batch of key industries including 25 industries including automotive, aerospace, chemical, defense military, electronic equipment, and pharmaceuticals, aims to attract investment, boost manufacturing growth, and create jobs.

  • In 2015

    Japan (new robot strategy plan):
    The five-year plan and the six major initiatives have reached three strategic goals, implemented the robot revolution, and responded to the increasingly prominent issues of aging, a reduction in the labor force, and frequent natural disasters.

    Japan (Industry 4.1J)
    The Japanese manufacturing industry, VEC, and NTT cooperate to start an Industry 4.0, and the purpose of the experiment is to confirm the technical requirements of Industry 4.1J.

    Japan (dominant industry value chain):
    The Industrial Value Chain Dominance Alliance (IVI) composed of Japanese companies. The main topics of the alliance are factory-to-factory, equipment-to-device communication technology, and safety technology standardization.

    China (Made in China 2025)
    China's first ten-year program to implement the strategy of manufacturing power. According to the plan, by 2025, China will develop from a manufacturing power to a manufacturing power.

  • In 2016

    Japan (Social 5.0)
    The Japanese government hopes to combine the Internet of Things (IoT), Artificial Intelligence (AI), and robots and other technologies in a continuously innovative and changing economic society based on a highly advanced science and technology to merge the online world (virtual world) and the physical world ( Real world), creating a richer super-smart society.

Taiwan's manufacturing industry once supported the glory of a generation, especially good at mass production and OEM manufacturing. In the face of such a global manufacturing revolution, the Taiwanese Executive Yuan’s production 4.0 development plan was also released on time, aimed at accelerating the vertical and horizontal digitalization and intelligence of the industrial chain, introducing key independent technologies for network integration and human-machine collaboration, and leveraging on Strength and collective efforts to accelerate the cultivation of the soft and hard power of the industrial network real system, and gave specific plans and goals in terms of capital investment/talent training/professional guidance. Manufacturers in the manufacturing industry are also actively responding, hoping to ride the tide of 4.0 to create a miracle.

But there is a big problem now that many manufacturers think that Smart Manufacturing and Industry 4.0 are unmanned factories for technological innovation, automation, and the use of robots. This misunderstanding has caused many companies to become more and more skewed towards Smart Manufacturing and Industry 4.0. They have invested a lot of money but have not received corresponding improvements inefficiency.

Smart manufacturing and Industry 4.0 are the integration of the entire product life cycle

Smart Manufacturing and Industry 4.0 is the management and service of the entire life cycle of products and is the integration of the entire link from the market to R&D and production to sales services.

For example. An automobile manufacturing company has achieved the production of a car every minute through industrial technology innovation and automated robot production. The flow of information from the R&D department to the procurement department to the production department to the logistics department, and stopped in the hands of users, then the parking lot wants to Obtain the user's usage status unless the car is driven back for maintenance. At present, this interrupted information flow has caused the parking yard to fail to provide timely customized services on the one hand but also caused the parking yard to not understand user needs and the status of its own products. In the development of new cars and the improvement of old cars No way to start. If it happens that a competing garage integrates the entire process, or if a manufacturer develops service products on the car side and can contract all user services without going through the garage, the fate of this garage will not be optimistic.

The market changes rapidly, and direction is the key to success

The fall of the giant, but a few years, Nokia, Kodak, Sony are examples. In the case of rapid market changes, the speed of business response and direction of action often become turning points for success or failure. At this time, the analysis of market data is particularly important. For example, this kind of market analysis captures real-time sales data of various regions, and displays the sales of products in various dimensions through products, regions, and customers, and obtains the sales fluctuations and development trends of each product, region, and customer within a specified time. This rich dimension and real-time data analysis provide a timely and accurate basis for what products are produced in the rear, what the direction of research and development is, how many raw materials are purchased, and how many products are produced.

Integrate pre- and post-manufacturing links to achieve coordination of mass production and customization

Production depends on the data provided by the market to determine what and how much to produce; the actual production volume restricted by purchasing inventory; the service after-sales data also determines how to improve the product function and quality-production is the link between all links in the factory And data integration users. Today, the market is changing and customized production is the general trend. How to improve production efficiency and shorten product production cycles to quickly respond to market changes, and how to achieve flexible decision-making and intelligent production to achieve "mass production" and "customization" Coordination between the two has become the key to the production process. Smart manufacturing and the hot technologies in Industry 4.0, the Internet of Things, AI, robots, and big data analysis are playing a role here. The visual factory uses a large number of built-in sensors to intensively capture specific information of specific areas or objects. You can always understand the operation of the entire plant on a PC or mobile phone; The resilience of its production line has reached the level that allows customers to change the design and equipment six days before the car enters the production line. No one is exactly the same. These implementations all depend on the implementation of the technology and the integration of the entire process data behind the technology.

The sensor extracts data from the production devices of each production institution every 5 minutes and displays them on the large data screen. The Group can understand the load of each production device and can find and solve problems in time to ensure production efficiency.

Service is the touchstone of all links

Understanding customers and products in service is feedback on the correctness of the market, as well as feedback on product quality and product development.

This report analyzes the product problems reported by customers and pays attention to the maintenance rate and failure rate, which is conducive to helping product development and improvement and production process optimization.

Each link in these business processes needs the support of data from other links. The effect of integration greatly improves the efficiency and scientificity of the entire process. But it is not a simple matter to get through the whole process. Each different link will encounter different systems. The database, data definition, and statistical standards of each system may be different. This forms a system The islands cannot be connected to each other. There are still some links that have not yet done the Internet of Things, and software applications and data collection need to be strengthened. But in order not to lag behind in Smart Manufacturing and Industry 4.0, these problems must be slowly supplemented one by one. Just like a bucket, one of the pieces of wood becomes shorter, which determines the capacity of the entire bucket.

Smart manufacturing and Industry 4.0 should start from the pain point, not from technology!

The road to smart manufacturing and industry 4.0 should start from the company's pain points, not just at the technical level. Seeing that everyone is laying outsmart manufacturing and industry 4.0, your own company must also import a set of data visualization factory equipment, not First analyze what problems exist in the enterprise to be solved, the result is often a lot of investment but no obvious effect of cost reduction and efficiency increase.

Before conducting Smart Manufacturing and Industry 4.0, you should ask yourself these questions:
What are the pain points of the enterprise? What smart manufacturing and Industry 4.0 technologies can be used to improve?
Ready to invest at a low cost, and how to measure the effect after the introduction? Will the improved results be better than other methods? If your answer is yes, it is not too late to start smart manufacturing and Industry 4.0.

Smart manufacturing and Industry 4.0 are a process, not completed

We have talked about enterprise electronization for many years, from the beginning to import CRM systems, to the subsequent introduction of MES, MIS, ERP, finance, logistics, and want to laugh systems. There are more systems and data is mixed, and then import a data integration tool: Report software or BI system tool. These are all processes of enterprise electronation. It has not been completed and has been in progress. No enterprise has said that its electronation is completed, and it is not necessary to do any more E-restoration in the future. The same is true of Smart Manufacturing and Industry 4.0. The sensing devices in hardware, network devices, robots, wearable devices, 3D printing, smartphones, cloud platforms in software, big data applications, artificial intelligence AI, Reality VR/Augmented Reality AR are all stages, and new technologies may emerge with development. Only by making preparations once and for all and constantly optimizing at any time according to the status of the enterprise and the development of technology can we remain invincible in the fierce competition.

Published by Jun 03, 2020 Source :finereport

Further reading

You might also be interested in ...

Breakthrough Data Processing Technology Helps Improve IoT Efficiency - Data Processing Speed is the Key to AI
The vision of the Internet of Things is to make everyone's life better, safer, and more convenient. To achieve this goal, we must first increase the speed of data processing, generate real-time intelligence, and allow IoT data to make informed decisions in seconds.
AR Remote Maintenance Has Been Implemented in The Factory
Industry 4.0 has become an important application for factories to improve production efficiency. Remote Control Management (RCM) is a solution that smart factories need to consider importing. Remote centralized control, no open API, installation of software occupying machine system resources, etc., can be effectively solved through RCM to achieve manufacturing intelligence.
The Efficiency of The Smart Fitness Industry Has Increased Greatly. How Can New Technologies Continue the Trend of Home Fitness?
The new epidemic has already changed people's living habits. Among them, home fitness has set off a wave, and some consumers have purchased related equipment for this purpose. Even if the epidemic is over, they may not return to the gym again. Under this trend, how can companies such as Lululemon and Nike use technology and big data to create a better "home fitness" experience? The epidemic has sparked a wave of home fitness, driving the sales of all kinds of home fitness equipment soaring, such as kettlebells, dumbbells, etc. all sold out of stock. Many start-ups and sports brands have also sensed business opportunities, launched various home fitness equipment, and used high-tech, big data and other technologies to create user-friendly "home gyms".
What is Machine-to-Machine (M2M)? Learn About its Industrial Applications
With the rise of the Internet of Things (IoT), the M2M (Machine to Machine) module technology has gradually received attention. M2M refers to the exchange and transmission of information between machines, and the concept of information sharing is achieved through the transmission and connection of network and machine equipment communication.
The Era of Human-Machine Collaboration Is Coming, Are You Ready?
Humans and robots working together can greatly reduce enterprise costs and improve team work efficiency. Such a “Human-Robot-Collaboration, HRC” model is bound to become the mainstream in the future, bringing industrial innovation and a more convenient life.
Optical Computer Technology Integrates Digital Technology with Machinery
Optical fiber computer technology then entered the field of machinery, with applications in passive components, light guide plates, vehicles, batteries, biotechnology, and other industries.
Electric Vehicle Business Opportunities, Creating a New Generation of Automotive Components, and a New Industrial Layout
Under the international consensus on carbon reduction, the wave of electric vehicles has swept the world and has become the focus of attention from all walks of life. It is predicted that the proportion of electric vehicles will increase significantly from 2030, and it is estimated that it will reach 55% of the global car market by 2040, surpassing the proportion of traditional fuel vehicles. In the era of electric vehicles, it will indirectly lead the machine tool industry to develop a new layout.
Business Opportunities for Lightweight Electric Vehicles
With the global electric vehicle market, the speed of research and development of new electric vehicles has been accelerated, and the density of charging stations has been continuously increased. Under the booming development, when consumers buy electric vehicles, they hope to enjoy the convenience of battery as the existing internal combustion engine vehicles that enjoy the relatively high density of gas stations, and the short single refueling time. Don't want to spend too much unnecessary effort of "power charging".
What is WITMED?
Under the influence of the epidemic, the global demand for telemedicine has increased significantly. The development of digital medical care is an important means to promote medical equality and achieve comprehensive health coverage. Telemedicine care will become the new medical routine "New Normal", and the integration of AI wisdom in medical technology will be accelerated after the epidemic. An important trend with information flow.
What is Wide Bandgap (WBG)?
In the field of semiconductor materials, the first generation of semiconductors is Si, the second generation is GaAs, and the third generation of wide energy gap semiconductors refers to SiC and GaN.
The Future Development Trend of Light Sensors
A light sensor is a sensor that converts light signals into electrical signals using photosensitive elements. The light sensor is usually composed of a set of light projector and light receiver. Light sensors are generally composed of three parts: light source, optical path and optoelectronic components. The measured changes are converted into changes in optical signals are further converted into electrical signals with the help of photoelectric elements. In the future, with the development and popularization of Internet of Things technology, the application of light sensors will penetrate into all aspects of human life.
The Output Value of Medical Materials Will Approach 500 Billion Us Dollars In 2023! 3D Printing Has Become a New Wave in The Medical Field
The technology of 3D printing medical materials has soared. The new technique "Layered Manufacturing Technology", also known as 3D printing, which is produced by layer-by-layer additive method, has become a popular in recent years. With the rapid advancement of 3D printing technology, the market of 3D printing medical materials has greatly grown.